group-vit-segmentation-transformer-torch#
Hugging Face Transformers model for zero-shot semantic segmentation.
Details
Model name:
group-vit-segmentation-transformer-torchModel source: https://huggingface.co/docs/transformers/en/tasks/mask_generation
Model author: Thomas Wolf, et al.
Model license: Apache 2.0
Model size: 212.80 MB
Exposes embeddings? yes
Tags:
segmentation, embeddings, torch, transformers, zero-shot, official
Requirements
Packages:
torch, torchvision, transformersCPU support
yes
GPU support
yes
Example usage
1import fiftyone as fo
2import fiftyone.zoo as foz
3
4dataset = foz.load_zoo_dataset(
5 "coco-2017",
6 split="validation",
7 dataset_name=fo.get_default_dataset_name(),
8 max_samples=50,
9 shuffle=True,
10)
11
12model = foz.load_zoo_model("group-vit-segmentation-transformer-torch",
13 text_prompt="A photo of a",
14 classes=["person", "dog", "cat", "bird", "car", "tree", "other"])
15
16dataset.apply_model(model, label_field="predictions")
17
18session = fo.launch_app(dataset)