fiftyone.utils.groups¶
Grouped dataset utilities.
Functions:
|
Merges the given collections into a grouped dataset using the specified field as a group key. |
-
fiftyone.utils.groups.
group_collections
(coll_dict, group_key, group_field='group')¶ Merges the given collections into a grouped dataset using the specified field as a group key.
The returned dataset will contain all samples from the input collections with non-None values for the specified
group_key
, with all samples with a givengroup_key
value in the same group.Examples:
import fiftyone as fo import fiftyone.utils.groups as foug dataset1 = fo.Dataset() dataset1.add_samples( [ fo.Sample(filepath="image-left1.jpg", group_id=1), fo.Sample(filepath="image-left2.jpg", group_id=2), fo.Sample(filepath="image-left3.jpg", group_id=3), fo.Sample(filepath="skip-me1.jpg"), ] ) dataset2 = fo.Dataset() dataset2.add_samples( [ fo.Sample(filepath="image-right1.jpg", group_id=1), fo.Sample(filepath="image-right2.jpg", group_id=2), fo.Sample(filepath="image-right4.jpg", group_id=4), fo.Sample(filepath="skip-me2.jpg"), ] ) dataset = foug.group_collections( {"left": dataset1, "right": dataset2}, "group_id" )
- Parameters
coll_dict – a dict mapping slice names to
fiftyone.core.collections.SampleCollection
instancesgroup_key – the field to use as a group membership key. The field may contain values of any hashable type (int, string, etc)
group_field ("group") – a name to use for the group field of the returned dataset
- Returns