fiftyone.core.models¶
FiftyOne models.
Functions:
|
Applies the model to the samples in the collection. |
|
Computes embeddings for the samples in the collection using the given model. |
|
Computes embeddings for the image patches defined by |
|
Loads the model specified by the given |
Classes:
|
Base configuration class that encapsulates the name of a |
|
Abstract base class for models. |
Mixin for |
|
Mixin for |
|
Mixin for |
|
Mixin for |
|
Mixin for |
|
Config settings for a |
|
|
Class for downloading FiftyOne models from the web. |
-
fiftyone.core.models.
apply_model
(samples, model, label_field='predictions', confidence_thresh=None, store_logits=False, batch_size=None, num_workers=None, skip_failures=True, output_dir=None, rel_dir=None, progress=None, **kwargs)¶ Applies the model to the samples in the collection.
This method supports all of the following cases:
Applying an image model to an image collection
Applying an image model to the frames of a video collection
Applying a video model to a video collection
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
model – a
Model
, Hugging Face Transformers model, Ultralytics model, SuperGradients model, or Lightning Flash modellabel_field ("predictions") – the name of the field in which to store the model predictions. When performing inference on video frames, the “frames.” prefix is optional
confidence_thresh (None) – an optional confidence threshold to apply to any applicable labels generated by the model
store_logits (False) – whether to store logits for the model predictions. This is only supported when the provided
model
has logits,model.has_logits == True
batch_size (None) – an optional batch size to use, if the model supports batching
num_workers (None) – the number of workers to use when loading images. Only applicable for Torch-based models
skip_failures (True) – whether to gracefully continue without raising an error if predictions cannot be generated for a sample. Only applicable to
Model
instancesoutput_dir (None) – an optional output directory in which to write segmentation images. Only applicable if the model generates segmentations. If none is provided, the segmentations are stored in the database
rel_dir (None) – an optional relative directory to strip from each input filepath to generate a unique identifier that is joined with
output_dir
to generate an output path for each segmentation image. This argument allows for populating nested subdirectories inoutput_dir
that match the shape of the input paths. The path is converted to an absolute path (if necessary) viafiftyone.core.storage.normalize_path()
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – optional model-specific keyword arguments passed through to the underlying inference implementation
-
fiftyone.core.models.
compute_embeddings
(samples, model, embeddings_field=None, batch_size=None, num_workers=None, skip_failures=True, progress=None, **kwargs)¶ Computes embeddings for the samples in the collection using the given model.
This method supports all the following cases:
Using an image model to compute embeddings for an image collection
Using an image model to compute frame embeddings for a video collection
Using a video model to compute embeddings for a video collection
The
model
must expose embeddings, i.e.,Model.has_embeddings()
must returnTrue
.If an
embeddings_field
is provided, the embeddings are saved to the samples; otherwise, the embeddings are returned in-memory.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
model – a
Model
, Hugging Face Transformers model, Ultralytics model, SuperGradients model, or Lightning Flash modelembeddings_field (None) – the name of a field in which to store the embeddings. When computing video frame embeddings, the “frames.” prefix is optional
batch_size (None) – an optional batch size to use, if the model supports batching
num_workers (None) – the number of workers to use when loading images. Only applicable for Torch-based models
skip_failures (True) – whether to gracefully continue without raising an error if embeddings cannot be generated for a sample. Only applicable to
Model
instancesprogress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – optional model-specific keyword arguments passed through to the underlying inference implementation
- Returns
None
, if anembeddings_field
is provideda
num_samples x num_dim
array of embeddings, when computing embeddings for image/video collections with image/video models, respectively, and noembeddings_field
is provided. Ifskip_failures
isTrue
and any errors are detected, a list of lengthnum_samples
is returned instead containing all successfully computed embedding vectors along withNone
entries for samples for which embeddings could not be computeda dictionary mapping sample IDs to
num_frames x num_dim
arrays of embeddings, when computing frame embeddings for video collections using an image model. Ifskip_failures
isTrue
and any errors are detected, the values of this dictionary will contain arrays of embeddings for all frames 1, 2, … until the error occurred, orNone
if no embeddings were computed at all
- Return type
one of the following
-
fiftyone.core.models.
compute_patch_embeddings
(samples, model, patches_field, embeddings_field=None, force_square=False, alpha=None, handle_missing='skip', batch_size=None, num_workers=None, skip_failures=True, progress=None)¶ Computes embeddings for the image patches defined by
patches_field
of the samples in the collection using the given model.This method supports all the following cases:
Using an image model to compute patch embeddings for an image collection
Using an image model to compute frame patch embeddings for a video collection
The
model
must expose embeddings, i.e.,Model.has_embeddings()
must returnTrue
.If an
embeddings_field
is provided, the embeddings are saved to the samples; otherwise, the embeddings are returned in-memory.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
model – a
Model
, Hugging Face Transformers model, Ultralytics model, SuperGradients model, or Lightning Flash modelpatches_field – the name of the field defining the image patches in each sample to embed. Must be of type
fiftyone.core.labels.Detection
,fiftyone.core.labels.Detections
,fiftyone.core.labels.Polyline
, orfiftyone.core.labels.Polylines
. When computing video frame embeddings, the “frames.” prefix is optionalembeddings_field (None) – the name of a label attribute in which to store the embeddings
force_square (False) – whether to minimally manipulate the patch bounding boxes into squares prior to extraction
alpha (None) – an optional expansion/contraction to apply to the patches before extracting them, in
[-1, inf)
. If provided, the length and width of the box are expanded (or contracted, whenalpha < 0
) by(100 * alpha)%
. For example, setalpha = 0.1
to expand the boxes by 10%, and setalpha = -0.1
to contract the boxes by 10%handle_missing ("skip") –
how to handle images with no patches. Supported values are:
”skip”: skip the image and assign its embedding as
None
”image”: use the whole image as a single patch
”error”: raise an error
batch_size (None) – an optional batch size to use, if the model supports batching
num_workers (None) – the number of workers to use when loading images. Only applicable for Torch models
skip_failures (True) – whether to gracefully continue without raising an error if embeddings cannot be generated for a sample
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- Returns
None
, if anembeddings_field
is provideda dict mapping sample IDs to
num_patches x num_dim
arrays of patch embeddings, when computing patch embeddings for image collections and noembeddings_field
is provided. Ifskip_failures
isTrue
and any errors are detected, this dictionary will containNone
values for any samples for which embeddings could not be computeda dict of dicts mapping sample IDs to frame numbers to
num_patches x num_dim
arrays of patch embeddings, when computing patch embeddings for the frames of video collections and noembeddings_field
is provided. Ifskip_failures
isTrue
and any errors are detected, this nested dict will contain missing orNone
values to indicate uncomputable embeddings
- Return type
one of the following
-
fiftyone.core.models.
load_model
(model_config_dict, model_path=None, **kwargs)¶ Loads the model specified by the given
ModelConfig
dict.- Parameters
model_config_dict – a
ModelConfig
dictmodel_path (None) – an optional model path to inject into the
model_path
field of the model’sConfig
instance, which must implement theeta.core.learning.HasPublishedModel
interface. This is useful when working with a model whose weights are stored locally and do not need to be downloaded**kwargs – optional keyword arguments to inject into the model’s
Config
instance
- Returns
a
Model
instance
-
class
fiftyone.core.models.
ModelConfig
(d)¶ Bases:
eta.core.learning.ModelConfig
Base configuration class that encapsulates the name of a
Model
and an instance of its associated Config class.- Parameters
type – the fully-qualified class name of the
Model
subclassconfig – an instance of the Config class associated with the model
Methods:
Returns a list of class attributes to be serialized.
build
()Factory method that builds the Model instance from the config specified by this class.
builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a Config object from a JSON dictionary.
from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
-
attributes
()¶ Returns a list of class attributes to be serialized.
This method is called internally by serialize() to determine the class attributes to serialize.
Subclasses can override this method, but, by default, all attributes in vars(self) are returned, minus private attributes, i.e., those starting with “_”. The order of the attributes in this list is preserved when serializing objects, so a common pattern is for subclasses to override this method if they want their JSON files to be organized in a particular way.
- Returns
a list of class attributes to be serialized
-
build
()¶ Factory method that builds the Model instance from the config specified by this class.
- Returns
a Model instance
-
classmethod
builder
()¶ Returns a ConfigBuilder instance for this class.
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
default
()¶ Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
-
classmethod
from_dict
(d)¶ Constructs a Config object from a JSON dictionary.
Config subclass constructors accept JSON dictionaries, so this method simply passes the dictionary to cls().
- Parameters
d – a dict of fields expected by cls
- Returns
an instance of cls
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_kwargs
(**kwargs)¶ Constructs a Config object from keyword arguments.
- Parameters
**kwargs – keyword arguments that define the fields expected by cls
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
classmethod
load_default
()¶ Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
-
static
parse_array
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw array attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns
a list of raw (untouched) values
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_bool
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a boolean value.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns
True/False
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_categorical
(d, key, choices, default=<eta.core.config.NoDefault object>)¶ Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
-
static
parse_dict
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns
a dictionary
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_int
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses an integer attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns
an int
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_mutually_exclusive_fields
(fields)¶ Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Returns
the (field, value) that was set
- Raises
ConfigError – if zero or more than one truthy value was found
-
static
parse_number
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a number attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns
a number (e.g. int, float)
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns
an instance of cls
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_array
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns
a list of cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_dict
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns
a dictionary whose values are cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_path
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a path string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_raw
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw (arbitrary) JSON field.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field
- Raises
ConfigError – if no default value was provided and the key was not found in the dictionary
-
static
parse_string
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a string attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
static
validate_all_or_nothing_fields
(fields)¶ Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Raises
ConfigError – if some values are truth and some are not
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
class
fiftyone.core.models.
Model
¶ Bases:
eta.core.learning.Model
Abstract base class for models.
This class declares the following conventions:
Model.__init__()
should take a singleconfig
argument that is an instance of<Model>Config
Models implement the context manager interface. This means that models can optionally use context to perform any necessary setup and teardown, and so any code that builds a model should use the
with
syntax
Attributes:
The media type processed by the model.
Whether this instance can generate logits for its predictions.
Whether this instance can generate embeddings.
Whether this instance can generate prompt embeddings.
True/False whether
transforms()
may return tensors of different sizes.The preprocessing function that will/must be applied to each input before prediction, or
None
if no preprocessing is performed.Whether to apply
transforms()
during inference (True) or to assume that they have already been applied (False).Methods:
predict
(arg)Performs prediction on the given data.
predict_all
(args)Performs prediction on the given iterable of data.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
validate
(config)Validates that the given config is an instance of <cls>Config.
-
property
media_type
¶ The media type processed by the model.
Supported values are “image” and “video”.
-
property
has_logits
¶ Whether this instance can generate logits for its predictions.
This method returns
False
by default. Methods that can generate logits will override this via implementing theLogitsMixin
interface.
-
property
has_embeddings
¶ Whether this instance can generate embeddings.
This method returns
False
by default. Methods that can generate embeddings will override this via implementing theEmbeddingsMixin
interface.
-
property
can_embed_prompts
¶ Whether this instance can generate prompt embeddings.
This method returns
False
by default. Methods that can generate prompt embeddings will override this via implementing thePromptMixin
interface.
-
property
ragged_batches
¶ True/False whether
transforms()
may return tensors of different sizes. If True, then passing ragged lists of data topredict_all()
is not allowed.
-
property
transforms
¶ The preprocessing function that will/must be applied to each input before prediction, or
None
if no preprocessing is performed.
-
property
preprocess
¶ Whether to apply
transforms()
during inference (True) or to assume that they have already been applied (False).
-
predict
(arg)¶ Performs prediction on the given data.
Image models should support, at minimum, processing
arg
values that are uint8 numpy arrays (HWC).Video models should support, at minimum, processing
arg
values that areeta.core.video.VideoReader
instances.- Parameters
arg – the data
- Returns
a
fiftyone.core.labels.Label
instance or dict offiftyone.core.labels.Label
instances containing the predictions
-
predict_all
(args)¶ Performs prediction on the given iterable of data.
Image models should support, at minimum, processing
args
values that are either lists of uint8 numpy arrays (HWC) or numpy array tensors (NHWC).Video models should support, at minimum, processing
args
values that are lists ofeta.core.video.VideoReader
instances.Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
predict()
to each.- Parameters
args – an iterable of data
- Returns
a list of
fiftyone.core.labels.Label
instances or a list of dicts offiftyone.core.labels.Label
instances containing the predictions
-
classmethod
from_config
(config)¶ Instantiates a Configurable class from a <cls>Config instance.
-
classmethod
from_dict
(d)¶ Instantiates a Configurable class from a <cls>Config dict.
- Parameters
d – a dict to construct a <cls>Config
- Returns
an instance of cls
-
classmethod
from_json
(json_path)¶ Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters
json_path – path to a JSON file for type <cls>Config
- Returns
an instance of cls
-
classmethod
from_kwargs
(**kwargs)¶ Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns
an instance of cls
-
static
parse
(class_name, module_name=None)¶ Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns
the Configurable class config_cls: the Config class associated with cls
- Return type
cls
-
classmethod
validate
(config)¶ Validates that the given config is an instance of <cls>Config.
- Raises
ConfigurableError – if config is not an instance of <cls>Config
-
class
fiftyone.core.models.
LogitsMixin
¶ Bases:
object
Mixin for
Model
classes that can generate logits for their predictions.This mixin allows for the possibility that only some instances of a class are capable of generating logits, per the value of the
has_logits()
property.Attributes:
Whether the model should store logits in its predictions.
Whether this instance can generate logits.
-
property
store_logits
¶ Whether the model should store logits in its predictions.
-
property
has_logits
¶ Whether this instance can generate logits.
-
property
-
class
fiftyone.core.models.
EmbeddingsMixin
¶ Bases:
object
Mixin for
Model
classes that can generate embeddings for their predictions.This mixin allows for the possibility that only some instances of a class are capable of generating embeddings, per the value of the
has_embeddings()
property.Attributes:
Whether this instance has embeddings.
Methods:
Returns the embeddings generated by the last forward pass of the model.
embed
(arg)Generates an embedding for the given data.
embed_all
(args)Generates embeddings for the given iterable of data.
-
property
has_embeddings
¶ Whether this instance has embeddings.
-
get_embeddings
()¶ Returns the embeddings generated by the last forward pass of the model.
By convention, this method should always return an array whose first axis represents batch size (which will always be 1 when
predict()
was last used).- Returns
a numpy array containing the embedding(s)
-
embed
(arg)¶ Generates an embedding for the given data.
Subclasses can override this method to increase efficiency, but, by default, this method simply calls
predict()
and then returnsget_embeddings()
.- Parameters
arg – the data. See
predict()
for details- Returns
a numpy array containing the embedding
-
embed_all
(args)¶ Generates embeddings for the given iterable of data.
Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
embed()
to each.- Parameters
args – an iterable of data. See
predict_all()
for details- Returns
a numpy array containing the embeddings stacked along axis 0
-
property
-
class
fiftyone.core.models.
PromptMixin
¶ Bases:
object
Mixin for
Model
classes that can generate prompt embeddings.This mixin allows for the possibility that only some instances of a class are capable of generating prompt embeddings, per the value of the
can_embed_prompts()
property.Attributes:
Whether this instance can generate prompt embeddings.
Methods:
embed_prompt
(arg)Generates an embedding for the given prompt.
embed_prompts
(args)Generates embeddings for the given prompts.
-
property
can_embed_prompts
¶ Whether this instance can generate prompt embeddings.
-
embed_prompt
(arg)¶ Generates an embedding for the given prompt.
- Parameters
arg – the prompt
- Returns
a numpy array containing the embedding
-
embed_prompts
(args)¶ Generates embeddings for the given prompts.
Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
embed_prompt()
to each.- Parameters
args – an iterable of prompts
- Returns
a numpy array containing the embeddings stacked along axis 0
-
property
-
class
fiftyone.core.models.
SamplesMixin
¶ Bases:
object
Mixin for
Model
classes that need samples for prediction.Models can implement this mixin to declare that they require one or more fields of the current sample when performing inference on its media.
The fields are get/set via
needs_fields()
, which is a dict that maps model-specific keys to sample field names:model.needs_fields = {"key1": "field1", "key2": "field2", ...}
Attributes:
A dict mapping model-specific keys to sample field names.
Methods:
predict
(arg[, sample])Performs prediction on the given data.
predict_all
(args[, samples])Performs prediction on the given iterable of data.
-
property
needs_fields
¶ A dict mapping model-specific keys to sample field names.
-
predict
(arg, sample=None)¶ Performs prediction on the given data.
Image models should support, at minimum, processing
arg
values that are uint8 numpy arrays (HWC).Video models should support, at minimum, processing
arg
values that areeta.core.video.VideoReader
instances.- Parameters
arg – the data
sample (None) – the
fiftyone.core.sample.Sample
associated with the data
- Returns
a
fiftyone.core.labels.Label
instance or dict offiftyone.core.labels.Label
instances containing the predictions
-
predict_all
(args, samples=None)¶ Performs prediction on the given iterable of data.
Image models should support, at minimum, processing
args
values that are either lists of uint8 numpy arrays (HWC) or numpy array tensors (NHWC).Video models should support, at minimum, processing
args
values that are lists ofeta.core.video.VideoReader
instances.Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
predict()
to each.- Parameters
args – an iterable of data
samples (None) – an iterable of
fiftyone.core.sample.Sample
instances associated with the data
- Returns
a list of
fiftyone.core.labels.Label
instances or a list of dicts offiftyone.core.labels.Label
instances containing the predictions
-
property
-
class
fiftyone.core.models.
TorchModelMixin
¶ Bases:
object
Mixin for
Model
classes that support feeding data for inference via atorch.utils.data.DataLoader
.Models implementing this mixin must expose via their
Model.transforms()
property thetorchvision.transforms
function that will/must be applied to each input before prediction.
-
class
fiftyone.core.models.
ModelManagerConfig
(d)¶ Bases:
eta.core.models.ModelManagerConfig
Config settings for a
ModelManager
.- Parameters
url (None) – the URL of the file
google_drive_id (None) – the ID of the file in Google Drive
extract_archive (None) – whether to extract the downloaded model, which is assumed to be an archive
delete_archive (None) – whether to delete the archive after extracting it, if applicable
Methods:
Returns a list of attributes to be serialized.
builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a Config object from a JSON dictionary.
from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
-
attributes
()¶ Returns a list of attributes to be serialized.
- Returns
a list of attributes
-
classmethod
builder
()¶ Returns a ConfigBuilder instance for this class.
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
default
()¶ Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
-
classmethod
from_dict
(d)¶ Constructs a Config object from a JSON dictionary.
Config subclass constructors accept JSON dictionaries, so this method simply passes the dictionary to cls().
- Parameters
d – a dict of fields expected by cls
- Returns
an instance of cls
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_kwargs
(**kwargs)¶ Constructs a Config object from keyword arguments.
- Parameters
**kwargs – keyword arguments that define the fields expected by cls
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
classmethod
load_default
()¶ Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
-
static
parse_array
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw array attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns
a list of raw (untouched) values
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_bool
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a boolean value.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns
True/False
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_categorical
(d, key, choices, default=<eta.core.config.NoDefault object>)¶ Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
-
static
parse_dict
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns
a dictionary
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_int
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses an integer attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns
an int
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_mutually_exclusive_fields
(fields)¶ Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Returns
the (field, value) that was set
- Raises
ConfigError – if zero or more than one truthy value was found
-
static
parse_number
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a number attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns
a number (e.g. int, float)
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns
an instance of cls
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_array
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns
a list of cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_dict
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns
a dictionary whose values are cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_path
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a path string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_raw
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw (arbitrary) JSON field.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field
- Raises
ConfigError – if no default value was provided and the key was not found in the dictionary
-
static
parse_string
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a string attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
static
validate_all_or_nothing_fields
(fields)¶ Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Raises
ConfigError – if some values are truth and some are not
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
class
fiftyone.core.models.
ModelManager
(config)¶ Bases:
eta.core.models.ModelManager
Class for downloading FiftyOne models from the web.
Methods:
Returns a list of attributes to be serialized.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
download_model
(model_path[, force])Downloads the model to the given local path.
flush_model
(model_path)Flushes the copy of the model at the given local path, if necessary.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Builds the ModelManager subclass from a JSON dictionary.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
is_model_downloaded
(model_path)Determines whether the model is downloaded to the given location.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
upload_model
(model_path, *args, **kwargs)validate
(config)Validates that the given config is an instance of <cls>Config.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
Deletes the model from remote storage.
-
attributes
()¶ Returns a list of attributes to be serialized.
- Returns
a list of attributes
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
download_model
(model_path, force=False)¶ Downloads the model to the given local path.
If the download is forced, any existing model is overwritten. If the download is not forced, the model will only be downloaded if it does not already exist locally.
- Parameters
model_path – the path to which to download the model
force – whether to force download the model. If True, the model is always downloaded. If False, the model is only downloaded if necessary. The default is False
- Raises
ModelError – if model downloading is not currently allowed
-
flush_model
(model_path)¶ Flushes the copy of the model at the given local path, if necessary.
- Parameters
model_path – the path on disk for the model
-
classmethod
from_config
(config)¶ Instantiates a Configurable class from a <cls>Config instance.
-
classmethod
from_dict
(d)¶ Builds the ModelManager subclass from a JSON dictionary.
- Parameters
d – a JSON dictionary
- Returns
a ModelManager instance
-
classmethod
from_json
(json_path)¶ Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters
json_path – path to a JSON file for type <cls>Config
- Returns
an instance of cls
-
classmethod
from_kwargs
(**kwargs)¶ Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
is_model_downloaded
(model_path)¶ Determines whether the model is downloaded to the given location.
If model_path is an archive, this method will also return True if a directory with the same basename as model_path exists.
- Parameters
model_path – the path on disk for the model
- Returns
True/False
-
static
parse
(class_name, module_name=None)¶ Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns
the Configurable class config_cls: the Config class associated with cls
- Return type
cls
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
static
upload_model
(model_path, *args, **kwargs)¶
-
classmethod
validate
(config)¶ Validates that the given config is an instance of <cls>Config.
- Raises
ConfigurableError – if config is not an instance of <cls>Config
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
delete_model
()¶ Deletes the model from remote storage.
-