Built-In Zoo Models¶
This page lists all of the natively available models in the FiftyOne Model Zoo.
Check out the API reference for complete instructions for using the Model Zoo.
alexnet-imagenet-torch
AlexNet model architecture from "One weird trick for parallelizing convolutional neural networks" trained on ImageNet
centernet-hg104-1024-coco-tf2
CenterNet model from "Objects as Points" with the Hourglass-104 backbone trained on COCO resized to 1024x1024
centernet-hg104-512-coco-tf2
CenterNet model from "Objects as Points" with the Hourglass-104 backbone trained on COCO resized to 512x512
centernet-mobilenet-v2-fpn-512-coco-tf2
CenterNet model from "Objects as Points" with the MobileNetV2 backbone trained on COCO resized to 512x512
centernet-resnet101-v1-fpn-512-coco-tf2
CenterNet model from "Objects as Points" with the ResNet-101v1 backbone + FPN trained on COCO resized to 512x512
centernet-resnet50-v1-fpn-512-coco-tf2
CenterNet model from "Objects as Points" with the ResNet-50-v1 backbone + FPN trained on COCO resized to 512x512
centernet-resnet50-v2-512-coco-tf2
CenterNet model from "Objects as Points" with the ResNet-50v2 backbone trained on COCO resized to 512x512
classification-transformer-torch
Hugging Face Transformers model for image classification
clip-vit-base32-torch
CLIP text/image encoder from "Learning Transferable Visual Models From Natural Language Supervision" trained on 400M text-image pairs
deeplabv3-cityscapes-tf
DeepLabv3+ semantic segmentation model from "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" with Xception backbone trained on the Cityscapes dataset
deeplabv3-mnv2-cityscapes-tf
DeepLabv3+ semantic segmentation model from "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" with MobileNetV2 backbone trained on the Cityscapes dataset
deeplabv3-resnet101-coco-torch
DeepLabV3 model from "Rethinking Atrous Convolution for Semantic Image Segmentation" with ResNet-101 backbone trained on COCO
deeplabv3-resnet50-coco-torch
DeepLabV3 model from "Rethinking Atrous Convolution for Semantic Image Segmentation" with ResNet-50 backbone trained on COCO
densenet121-imagenet-torch
Densenet-121 model from "Densely Connected Convolutional Networks" trained on ImageNet
densenet161-imagenet-torch
Densenet-161 model from "Densely Connected Convolutional Networks" trained on ImageNet
densenet169-imagenet-torch
Densenet-169 model from "Densely Connected Convolutional Networks" trained on ImageNet
densenet201-imagenet-torch
Densenet-201 model from "Densely Connected Convolutional Networks" trained on ImageNet
depth-estimation-transformer-torch
Hugging Face Transformers model for monocular depth estimation
detection-transformer-torch
Hugging Face Transformers model for object detection
dinov2-vitb14-torch
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled
dinov2-vitg14-torch
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14
dinov2-vitl14-torch
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled
dinov2-vits14-torch
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled
efficientdet-d0-512-coco-tf2
EfficientDet-D0 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 512x512
efficientdet-d0-coco-tf1
EfficientDet-D0 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d1-640-coco-tf2
EfficientDet-D1 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 640x640
efficientdet-d1-coco-tf1
EfficientDet-D1 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d2-768-coco-tf2
EfficientDet-D2 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 768x768
efficientdet-d2-coco-tf1
EfficientDet-D2 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d3-896-coco-tf2
EfficientDet-D3 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 896x896
efficientdet-d3-coco-tf1
EfficientDet-D3 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d4-1024-coco-tf2
EfficientDet-D4 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1024x1024
efficientdet-d4-coco-tf1
EfficientDet-D4 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d5-1280-coco-tf2
EfficientDet-D5 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1280x1280
efficientdet-d5-coco-tf1
EfficientDet-D5 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d6-1280-coco-tf2
EfficientDet-D6 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1280x1280
efficientdet-d6-coco-tf1
EfficientDet-D6 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO
efficientdet-d7-1536-coco-tf2
EfficientDet-D7 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1536x1536
faster-rcnn-inception-resnet-atrous-v2-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" atrous version with Inception backbone trained on COCO
faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" atrous version with low-proposals and Inception backbone trained on COCO
faster-rcnn-inception-v2-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with Inception v2 backbone trained on COCO
faster-rcnn-nas-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with NAS-net backbone trained on COCO
faster-rcnn-nas-lowproposals-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and NAS-net backbone trained on COCO
faster-rcnn-resnet101-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-101 backbone trained on COCO
faster-rcnn-resnet101-lowproposals-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and ResNet-101 backbone trained on COCO
faster-rcnn-resnet50-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-50 backbone trained on COCO
faster-rcnn-resnet50-fpn-coco-torch
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-50 FPN backbone trained on COCO
faster-rcnn-resnet50-lowproposals-coco-tf
Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and ResNet-50 backbone trained on COCO
fcn-resnet101-coco-torch
FCN model from "Fully Convolutional Networks for Semantic Segmentation" with ResNet-101 backbone trained on COCO
fcn-resnet50-coco-torch
FCN model from "Fully Convolutional Networks for Semantic Segmentation" with ResNet-50 backbone trained on COCO
googlenet-imagenet-torch
GoogLeNet (Inception v1) model from "Going Deeper with Convolutions" trained on ImageNet
inception-resnet-v2-imagenet-tf1
Inception v2 model from "Rethinking the Inception Architecture for Computer Vision" trained on ImageNet
inception-v3-imagenet-torch
Inception v3 model from "Rethinking the Inception Architecture for Computer Vision" trained on ImageNet
inception-v4-imagenet-tf1
Inception v4 model from "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning" trained on ImageNet
keypoint-rcnn-resnet50-fpn-coco-torch
Keypoint R-CNN model from "Mask R-CNN" with ResNet-50 FPN backbone trained on COCO
mask-rcnn-inception-resnet-v2-atrous-coco-tf
Mask R-CNN model from "Mask R-CNN" atrous version with Inception backbone trained on COCO
mask-rcnn-inception-v2-coco-tf
Mask R-CNN model from "Mask R-CNN" with Inception backbone trained on COCO
mask-rcnn-resnet101-atrous-coco-tf
Mask R-CNN model from "Mask R-CNN" atrous version with ResNet-101 backbone trained on COCO
mask-rcnn-resnet50-atrous-coco-tf
Mask R-CNN model from "Mask R-CNN" atrous version with ResNet-50 backbone trained on COCO
mask-rcnn-resnet50-fpn-coco-torch
Mask R-CNN model from "Mask R-CNN" with ResNet-50 FPN backbone trained on COCO
med-sam-2-video-torch
Fine-tuned SAM2-hiera-tiny model from "Medical SAM 2 - Segment Medical Images as Video via Segment Anything Model 2"
mnasnet0.5-imagenet-torch
MNASNet model from from "MnasNet: Platform-Aware Neural Architecture Search for Mobile" with depth multiplier of 0.5 trained on ImageNet
mnasnet1.0-imagenet-torch
MNASNet model from "MnasNet: Platform-Aware Neural Architecture Search for Mobile" with depth multiplier of 1.0 trained on ImageNet
mobilenet-v2-imagenet-tf1
MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" trained on ImageNet
mobilenet-v2-imagenet-torch
MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" trained on ImageNet
open-clip-torch
OPEN CLIP text/image encoder from "Learning Transferable Visual Models From Natural Language Supervision" trained on 400M text-image pairs
resnet-v1-50-imagenet-tf1
ResNet-50 v1 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet-v2-50-imagenet-tf1
ResNet-50 v2 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet101-imagenet-torch
ResNet-101 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet152-imagenet-torch
ResNet-152 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet18-imagenet-torch
ResNet-18 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet34-imagenet-torch
ResNet-34 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnet50-imagenet-torch
ResNet-50 model from "Deep Residual Learning for Image Recognition" trained on ImageNet
resnext101-32x8d-imagenet-torch
ResNeXt-101 32x8d model from "Aggregated Residual Transformations for Deep Neural Networks" trained on ImageNet
resnext50-32x4d-imagenet-torch
ResNeXt-50 32x4d model from "Aggregated Residual Transformations for Deep Neural Networks" trained on ImageNet
retinanet-resnet50-fpn-coco-torch
RetinaNet model from "Focal Loss for Dense Object Detection" with ResNet-50 FPN backbone trained on COCO
rfcn-resnet101-coco-tf
R-FCN object detection model from "R-FCN: Object Detection via Region-based Fully Convolutional Networks" with ResNet-101 backbone trained on COCO
rtdetr-l-coco-torch
RT-DETR-l model trained on COCO
rtdetr-x-coco-torch
RT-DETR-x model trained on COCO
segment-anything-2-hiera-base-plus-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-base-plus-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-large-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-large-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-small-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-small-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-tiny-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2-hiera-tiny-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-base-plus-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-base-plus-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-large-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-large-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-small-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-small-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-tiny-image-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-2.1-hiera-tiny-video-torch
Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"
segment-anything-vitb-torch
Segment Anything Model (SAM) from "Segment Anything" with ViT-B/16 backbone trained on SA-1B
segment-anything-vith-torch
Segment Anything Model (SAM) from "Segment Anything" with ViT-H/16 backbone trained on SA-1B
segment-anything-vitl-torch
Segment Anything Model (SAM) from "Segment Anything" with ViT-L/16 backbone trained on SA-1B
segmentation-transformer-torch
Hugging Face Transformers model for semantic segmentation
shufflenetv2-0.5x-imagenet-torch
ShuffleNetV2 model from "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" with 0.5x output channels trained on ImageNet
shufflenetv2-1.0x-imagenet-torch
ShuffleNetV2 model from "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" with 1.0x output channels trained on ImageNet
squeezenet-1.1-imagenet-torch
SqueezeNet 1.1 model from "the official SqueezeNet repo" trained on ImageNet
squeezenet-imagenet-torch
SqueezeNet model from "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and" trained on ImageNet
ssd-inception-v2-coco-tf
Inception Single Shot Detector model from "SSD: Single Shot MultiBox Detector" trained on COCO
ssd-mobilenet-v1-coco-tf
Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with MobileNetV1 backbone trained on COCO
ssd-mobilenet-v1-fpn-640-coco17
MobileNetV1 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" resized to 640x640
ssd-mobilenet-v1-fpn-coco-tf
FPN Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with MobileNetV1 backbone trained on COCO
ssd-mobilenet-v2-320-coco17
MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" resized to 320x320
ssd-resnet50-fpn-coco-tf
FPN Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with ResNet-50 backbone trained on COCO
vgg11-bn-imagenet-torch
VGG-11 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet
vgg11-imagenet-torch
VGG-11 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet
vgg13-bn-imagenet-torch
VGG-13 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet
vgg13-imagenet-torch
VGG-13 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet
vgg16-bn-imagenet-torch
VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet
vgg16-imagenet-tf1
VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet
vgg16-imagenet-torch
VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet
vgg19-bn-imagenet-torch
VGG-19 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet
vgg19-imagenet-torch
VGG-19 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet
wide-resnet101-2-imagenet-torch
Wide ResNet-101-2 model from "Wide Residual Networks" trained on ImageNet
wide-resnet50-2-imagenet-torch
Wide ResNet-50-2 model from "Wide Residual Networks" trained on ImageNet
yolo-nas-torch
YOLO-NAS is an open-source training library for advanced computer vision models. It specializes in accuracy and efficiency, supporting tasks like object detection
yolo-v2-coco-tf1
YOLOv2 model from "YOLO9000: Better, Faster, Stronger" trained on COCO
yolo11l-coco-torch
YOLO11-L model trained on COCO
yolo11l-seg-coco-torch
YOLO11-L Segmentation model trained on COCO
yolo11m-coco-torch
YOLO11-M model trained on COCO
yolo11m-seg-coco-torch
YOLO11-M Segmentation model trained on COCO
yolo11n-coco-torch
YOLO11-N model trained on COCO
yolo11n-seg-coco-torch
YOLO11-N Segmentation model trained on COCO
yolo11s-coco-torch
YOLO11-S model trained on COCO
yolo11s-seg-coco-torch
YOLO11-S Segmentation model trained on COCO
yolo11x-coco-torch
YOLO11-X model trained on COCO
yolo11x-seg-coco-torch
YOLO11-X Segmentation model trained on COCO
yolov10l-coco-torch
YOLOv10-L model trained on COCO
yolov10m-coco-torch
YOLOv10-M model trained on COCO
yolov10n-coco-torch
YOLOv10-N model trained on COCO
yolov10s-coco-torch
YOLOv10-S model trained on COCO
yolov10x-coco-torch
YOLOv10-X model trained on COCO
yolov5l-coco-torch
Ultralytics YOLOv5l model trained on COCO
yolov5m-coco-torch
Ultralytics YOLOv5m model trained on COCO
yolov5n-coco-torch
Ultralytics YOLOv5n model trained on COCO
yolov5s-coco-torch
Ultralytics YOLOv5s model trained on COCO
yolov5x-coco-torch
Ultralytics YOLOv5x model trained on COCO
yolov8l-coco-torch
Ultralytics YOLOv8l model trained on COCO
yolov8l-obb-dotav1-torch
YOLOv8l Oriented Bounding Box model
yolov8l-oiv7-torch
Ultralytics YOLOv8l model trained Open Images v7
yolov8l-seg-coco-torch
Ultralytics YOLOv8l Segmentation model trained on COCO
yolov8l-world-torch
YOLOv8l-World model
yolov8m-coco-torch
Ultralytics YOLOv8m model trained on COCO
yolov8m-obb-dotav1-torch
YOLOv8m Oriented Bounding Box model
yolov8m-oiv7-torch
Ultralytics YOLOv8m model trained Open Images v7
yolov8m-seg-coco-torch
Ultralytics YOLOv8m Segmentation model trained on COCO
yolov8m-world-torch
YOLOv8m-World model
yolov8n-coco-torch
Ultralytics YOLOv8n model trained on COCO
yolov8n-obb-dotav1-torch
YOLOv8n Oriented Bounding Box model
yolov8n-oiv7-torch
Ultralytics YOLOv8n model trained on Open Images v7
yolov8n-seg-coco-torch
Ultralytics YOLOv8n Segmentation model trained on COCO
yolov8s-coco-torch
Ultralytics YOLOv8s model trained on COCO
yolov8s-obb-dotav1-torch
YOLOv8s Oriented Bounding Box model
yolov8s-oiv7-torch
Ultralytics YOLOv8s model trained on Open Images v7
yolov8s-seg-coco-torch
Ultralytics YOLOv8s Segmentation model trained on COCO
yolov8s-world-torch
YOLOv8s-World model
yolov8x-coco-torch
Ultralytics YOLOv8x model trained on COCO
yolov8x-obb-dotav1-torch
YOLOv8x Oriented Bounding Box model
yolov8x-oiv7-torch
Ultralytics YOLOv8x model trained Open Images v7
yolov8x-seg-coco-torch
Ultralytics YOLOv8x Segmentation model trained on COCO
yolov8x-world-torch
YOLOv8x-World model
yolov9c-coco-torch
YOLOv9-C model trained on COCO
yolov9c-seg-coco-torch
YOLOv9-C Segmentation model trained on COCO
yolov9e-coco-torch
YOLOv9-E model trained on COCO
yolov9e-seg-coco-torch
YOLOv9-E Segmentation model trained on COCO
zero-shot-classification-transformer-torch
Hugging Face Transformers model for zero-shot image classification
zero-shot-detection-transformer-torch
Hugging Face Transformers model for zero-shot object detection
Torch models¶
alexnet-imagenet-torch¶
AlexNet model architecture from One weird trick for parallelizing convolutional neural networks trained on ImageNet.
Details
Model name:
alexnet-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 233.10 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, alexnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("alexnet-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
classification-transformer-torch¶
Hugging Face Transformers model for image classification.
Details
Model name:
classification-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/image_classification
Exposes embeddings? yes
Tags:
classification, logits, embeddings, torch, transformers
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("classification-transformer-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
clip-vit-base32-torch¶
CLIP text/image encoder from Learning Transferable Visual Models From Natural Language Supervision trained on 400M text-image pairs.
Details
Model name:
clip-vit-base32-torch
Model source: https://github.com/openai/CLIP
Model size: 337.58 MB
Exposes embeddings? yes
Tags:
classification, logits, embeddings, torch, clip, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("clip-vit-base32-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) # # Make zero-shot predictions with custom classes # model = foz.load_zoo_model( "clip-vit-base32-torch", text_prompt="A photo of a", classes=["person", "dog", "cat", "bird", "car", "tree", "chair"], ) dataset.apply_model(model, label_field="predictions") session.refresh() |
deeplabv3-resnet101-coco-torch¶
DeepLabV3 model from Rethinking Atrous Convolution for Semantic Image Segmentation with ResNet-101 backbone trained on COCO.
Details
Model name:
deeplabv3-resnet101-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 233.22 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, resnet, deeplabv3
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("deeplabv3-resnet101-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
deeplabv3-resnet50-coco-torch¶
DeepLabV3 model from Rethinking Atrous Convolution for Semantic Image Segmentation with ResNet-50 backbone trained on COCO.
Details
Model name:
deeplabv3-resnet50-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 160.51 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, resnet, deeplabv3
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("deeplabv3-resnet50-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
densenet121-imagenet-torch¶
Densenet-121 model from Densely Connected Convolutional Networks trained on ImageNet.
Details
Model name:
densenet121-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 30.84 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, densenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("densenet121-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
densenet161-imagenet-torch¶
Densenet-161 model from Densely Connected Convolutional Networks trained on ImageNet.
Details
Model name:
densenet161-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 110.37 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, densenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("densenet161-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
densenet169-imagenet-torch¶
Densenet-169 model from Densely Connected Convolutional Networks trained on ImageNet.
Details
Model name:
densenet169-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 54.71 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, densenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("densenet169-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
densenet201-imagenet-torch¶
Densenet-201 model from Densely Connected Convolutional Networks trained on ImageNet.
Details
Model name:
densenet201-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 77.37 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, densenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("densenet201-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
depth-estimation-transformer-torch¶
Hugging Face Transformers model for monocular depth estimation.
Details
Model name:
depth-estimation-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/monocular_depth_estimation
Exposes embeddings? no
Tags:
depth, torch, transformers
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("depth-estimation-transformer-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
detection-transformer-torch¶
Hugging Face Transformers model for object detection.
Details
Model name:
detection-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/object_detection
Exposes embeddings? yes
Tags:
detection, logits, embeddings, torch, transformers
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("detection-transformer-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
dinov2-vitb14-torch¶
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled.
Details
Model name:
dinov2-vitb14-torch
Model source: https://github.com/facebookresearch/dinov2
Model size: 330.33 MB
Exposes embeddings? yes
Tags:
embeddings, torch, dinov2
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("dinov2-vitb14-torch") embeddings = dataset.compute_embeddings(model) |
dinov2-vitg14-torch¶
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14.
Details
Model name:
dinov2-vitg14-torch
Model source: https://github.com/facebookresearch/dinov2
Model size: 4.23 GB
Exposes embeddings? yes
Tags:
embeddings, torch, dinov2
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("dinov2-vitg14-torch") embeddings = dataset.compute_embeddings(model) |
dinov2-vitl14-torch¶
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled.
Details
Model name:
dinov2-vitl14-torch
Model source: https://github.com/facebookresearch/dinov2
Model size: 1.13 GB
Exposes embeddings? yes
Tags:
embeddings, torch, dinov2
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("dinov2-vitl14-torch") embeddings = dataset.compute_embeddings(model) |
dinov2-vits14-torch¶
DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled.
Details
Model name:
dinov2-vits14-torch
Model source: https://github.com/facebookresearch/dinov2
Model size: 84.19 MB
Exposes embeddings? yes
Tags:
embeddings, torch, dinov2
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("dinov2-vits14-torch") embeddings = dataset.compute_embeddings(model) |
faster-rcnn-resnet50-fpn-coco-torch¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-50 FPN backbone trained on COCO.
Details
Model name:
faster-rcnn-resnet50-fpn-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 159.74 MB
Exposes embeddings? no
Tags:
detection, coco, torch, faster-rcnn, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-resnet50-fpn-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
fcn-resnet101-coco-torch¶
FCN model from Fully Convolutional Networks for Semantic Segmentation with ResNet-101 backbone trained on COCO.
Details
Model name:
fcn-resnet101-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 207.71 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, fcn, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("fcn-resnet101-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
fcn-resnet50-coco-torch¶
FCN model from Fully Convolutional Networks for Semantic Segmentation with ResNet-50 backbone trained on COCO.
Details
Model name:
fcn-resnet50-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 135.01 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, fcn, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("fcn-resnet50-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
googlenet-imagenet-torch¶
GoogLeNet (Inception v1) model from Going Deeper with Convolutions trained on ImageNet.
Details
Model name:
googlenet-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 49.73 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, googlenet
Requirements
Packages:
scipy, torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("googlenet-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
inception-v3-imagenet-torch¶
Inception v3 model from Rethinking the Inception Architecture for Computer Vision trained on ImageNet.
Details
Model name:
inception-v3-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 103.81 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, inception
Requirements
Packages:
scipy, torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("inception-v3-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
keypoint-rcnn-resnet50-fpn-coco-torch¶
Keypoint R-CNN model from Mask R-CNN with ResNet-50 FPN backbone trained on COCO.
Details
Model name:
keypoint-rcnn-resnet50-fpn-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 226.05 MB
Exposes embeddings? no
Tags:
keypoints, coco, torch, keypoint-rcnn, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("keypoint-rcnn-resnet50-fpn-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mask-rcnn-resnet50-fpn-coco-torch¶
Mask R-CNN model from Mask R-CNN with ResNet-50 FPN backbone trained on COCO.
Details
Model name:
mask-rcnn-resnet50-fpn-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 169.84 MB
Exposes embeddings? no
Tags:
instances, coco, torch, mask-rcnn, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mask-rcnn-resnet50-fpn-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
med-sam-2-video-torch¶
Fine-tuned SAM2-hiera-tiny model from Medical SAM 2 - Segment Medical Images as Video via Segment Anything Model 2.
Details
Model name:
med-sam-2-video-torch
Model source: https://github.com/MedicineToken/Medical-SAM2
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video, med-SAM
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F from fiftyone.utils.huggingface import load_from_hub dataset = load_from_hub("Voxel51/BTCV-CT-as-video-MedSAM2-dataset")[:2] # Retaining detections from a single frame in the middle # Note that SAM2 only propagates segmentation masks forward in a video ( dataset .match_frames(F("frame_number") != 100) .set_field("frames.gt_detections", None) .save() ) model = foz.load_zoo_model("med-sam-2-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="pred_segmentations", prompt_field="frames.gt_detections", ) session = fo.launch_app(dataset) |
mnasnet0.5-imagenet-torch¶
MNASNet model from from MnasNet: Platform-Aware Neural Architecture Search for Mobile with depth multiplier of 0.5 trained on ImageNet.
Details
Model name:
mnasnet0.5-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 8.59 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, mnasnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mnasnet0.5-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mnasnet1.0-imagenet-torch¶
MNASNet model from MnasNet: Platform-Aware Neural Architecture Search for Mobile with depth multiplier of 1.0 trained on ImageNet.
Details
Model name:
mnasnet1.0-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 16.92 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, mnasnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mnasnet1.0-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mobilenet-v2-imagenet-torch¶
MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks trained on ImageNet.
Details
Model name:
mobilenet-v2-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 13.55 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, mobilenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mobilenet-v2-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
open-clip-torch¶
OPEN CLIP text/image encoder from Learning Transferable Visual Models From Natural Language Supervision trained on 400M text-image pairs.
Details
Model name:
open-clip-torch
Model source: https://github.com/mlfoundations/open_clip
Exposes embeddings? yes
Tags:
classification, logits, embeddings, torch, clip, zero-shot
Requirements
Packages:
torch, torchvision, open_clip_torch
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("open-clip-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) # # Make zero-shot predictions with custom classes # model = foz.load_zoo_model( "open-clip-torch", text_prompt="A photo of a", classes=["person", "dog", "cat", "bird", "car", "tree", "chair"], ) dataset.apply_model(model, label_field="predictions") session.refresh() |
resnet101-imagenet-torch¶
ResNet-101 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet101-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 170.45 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet101-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet152-imagenet-torch¶
ResNet-152 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet152-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 230.34 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet152-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet18-imagenet-torch¶
ResNet-18 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet18-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 44.66 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet18-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet34-imagenet-torch¶
ResNet-34 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet34-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 83.26 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet34-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet50-imagenet-torch¶
ResNet-50 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet50-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 97.75 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet50-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnext101-32x8d-imagenet-torch¶
ResNeXt-101 32x8d model from Aggregated Residual Transformations for Deep Neural Networks trained on ImageNet.
Details
Model name:
resnext101-32x8d-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 339.59 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnext
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnext101-32x8d-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnext50-32x4d-imagenet-torch¶
ResNeXt-50 32x4d model from Aggregated Residual Transformations for Deep Neural Networks trained on ImageNet.
Details
Model name:
resnext50-32x4d-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 95.79 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, resnext
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnext50-32x4d-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
retinanet-resnet50-fpn-coco-torch¶
RetinaNet model from Focal Loss for Dense Object Detection with ResNet-50 FPN backbone trained on COCO.
Details
Model name:
retinanet-resnet50-fpn-coco-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 130.27 MB
Exposes embeddings? no
Tags:
detection, coco, torch, retinanet, resnet
Requirements
Packages:
torch, torchvision>=0.8.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("retinanet-resnet50-fpn-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
rtdetr-l-coco-torch¶
RT-DETR-l model trained on COCO.
Details
Model name:
rtdetr-l-coco-torch
Model source: https://docs.ultralytics.com/models/rtdetr/
Model size: 63.43 MB
Exposes embeddings? no
Tags:
detection, coco, torch, transformer, rtdetr
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("rtdetr-l-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
rtdetr-x-coco-torch¶
RT-DETR-x model trained on COCO.
Details
Model name:
rtdetr-x-coco-torch
Model source: https://docs.ultralytics.com/models/rtdetr/
Model size: 129.47 MB
Exposes embeddings? no
Tags:
detection, coco, torch, transformer, rtdetr
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("rtdetr-x-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
segment-anything-2-hiera-base-plus-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-base-plus-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2-hiera-base-plus-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2-hiera-base-plus-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-base-plus-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2-hiera-base-plus-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2-hiera-large-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-large-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2-hiera-large-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2-hiera-large-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-large-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2-hiera-large-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2-hiera-small-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-small-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2-hiera-small-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2-hiera-small-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-small-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2-hiera-small-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2-hiera-tiny-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-tiny-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2-hiera-tiny-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2-hiera-tiny-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2-hiera-tiny-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2-hiera-tiny-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-base-plus-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-base-plus-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2.1-hiera-base-plus-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-base-plus-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-base-plus-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2.1-hiera-base-plus-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-large-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-large-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2.1-hiera-large-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-large-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-large-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2.1-hiera-large-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-small-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-small-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2.1-hiera-small-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-small-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-small-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2.1-hiera-small-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-tiny-image-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-tiny-image-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-2.1-hiera-tiny-image-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-2.1-hiera-tiny-video-torch¶
Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.
Details
Model name:
segment-anything-2.1-hiera-tiny-video-torch
Model source: https://ai.meta.com/sam2/
Model size: 148.68 MB
Exposes embeddings? no
Tags:
segment-anything, torch, zero-shot, video
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2) # Only retain detections in the first frame ( dataset .match_frames(F("frame_number") > 1) .set_field("frames.detections", None) .save() ) model = foz.load_zoo_model("segment-anything-2.1-hiera-tiny-video-torch") # Segment inside boxes and propagate to all frames dataset.apply_model( model, label_field="segmentations", prompt_field="frames.detections", # can contain Detections or Keypoints ) session = fo.launch_app(dataset) |
segment-anything-vitb-torch¶
Segment Anything Model (SAM) from Segment Anything with ViT-B/16 backbone trained on SA-1B.
Details
Model name:
segment-anything-vitb-torch
Model source: https://segment-anything.com
Model size: 715.34 KB
Exposes embeddings? no
Tags:
segment-anything, sa-1b, torch, zero-shot
Requirements
Packages:
torch, torchvision, segment-anything
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-vitb-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-vith-torch¶
Segment Anything Model (SAM) from Segment Anything with ViT-H/16 backbone trained on SA-1B.
Details
Model name:
segment-anything-vith-torch
Model source: https://segment-anything.com
Model size: 4.78 MB
Exposes embeddings? no
Tags:
segment-anything, sa-1b, torch, zero-shot
Requirements
Packages:
torch, torchvision, segment-anything
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-vith-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segment-anything-vitl-torch¶
Segment Anything Model (SAM) from Segment Anything with ViT-L/16 backbone trained on SA-1B.
Details
Model name:
segment-anything-vitl-torch
Model source: https://segment-anything.com
Model size: 2.33 MB
Exposes embeddings? no
Tags:
segment-anything, sa-1b, torch, zero-shot
Requirements
Packages:
torch, torchvision, segment-anything
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segment-anything-vitl-torch") # Segment inside boxes dataset.apply_model( model, label_field="segmentations", prompt_field="ground_truth", # can contain Detections or Keypoints ) # Full automatic segmentations dataset.apply_model(model, label_field="auto") session = fo.launch_app(dataset) |
segmentation-transformer-torch¶
Hugging Face Transformers model for semantic segmentation.
Details
Model name:
segmentation-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/semantic_segmentation
Exposes embeddings? no
Tags:
segmentation, torch, transformers
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("segmentation-transformer-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
shufflenetv2-0.5x-imagenet-torch¶
ShuffleNetV2 model from ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design with 0.5x output channels trained on ImageNet.
Details
Model name:
shufflenetv2-0.5x-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 5.28 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, shufflenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("shufflenetv2-0.5x-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
shufflenetv2-1.0x-imagenet-torch¶
ShuffleNetV2 model from ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design with 1.0x output channels trained on ImageNet.
Details
Model name:
shufflenetv2-1.0x-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 8.79 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, shufflenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("shufflenetv2-1.0x-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
squeezenet-1.1-imagenet-torch¶
SqueezeNet 1.1 model from the official SqueezeNet repo trained on ImageNet.
Details
Model name:
squeezenet-1.1-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 4.74 MB
Exposes embeddings? no
Tags:
classification, imagenet, torch, squeezenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("squeezenet-1.1-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
squeezenet-imagenet-torch¶
SqueezeNet model from SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size trained on ImageNet.
Details
Model name:
squeezenet-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 4.79 MB
Exposes embeddings? no
Tags:
classification, imagenet, torch, squeezenet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("squeezenet-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg11-bn-imagenet-torch¶
VGG-11 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.
Details
Model name:
vgg11-bn-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 506.88 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg11-bn-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg11-imagenet-torch¶
VGG-11 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.
Details
Model name:
vgg11-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 506.84 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg11-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg13-bn-imagenet-torch¶
VGG-13 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.
Details
Model name:
vgg13-bn-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 507.59 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg13-bn-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg13-imagenet-torch¶
VGG-13 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.
Details
Model name:
vgg13-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 507.54 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg13-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg16-bn-imagenet-torch¶
VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.
Details
Model name:
vgg16-bn-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 527.87 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg16-bn-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg16-imagenet-torch¶
VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.
Details
Model name:
vgg16-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 527.80 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg16-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg19-bn-imagenet-torch¶
VGG-19 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.
Details
Model name:
vgg19-bn-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 548.14 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg19-bn-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg19-imagenet-torch¶
VGG-19 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.
Details
Model name:
vgg19-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 548.05 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, vgg
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg19-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
wide-resnet101-2-imagenet-torch¶
Wide ResNet-101-2 model from Wide Residual Networks trained on ImageNet.
Details
Model name:
wide-resnet101-2-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 242.90 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, wide-resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("wide-resnet101-2-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
wide-resnet50-2-imagenet-torch¶
Wide ResNet-50-2 model from Wide Residual Networks trained on ImageNet.
Details
Model name:
wide-resnet50-2-imagenet-torch
Model source: https://pytorch.org/vision/main/models.html
Model size: 131.82 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, torch, wide-resnet
Requirements
Packages:
torch, torchvision
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("wide-resnet50-2-imagenet-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo-nas-torch¶
YOLO-NAS is an open-source training library for advanced computer vision models. It specializes in accuracy and efficiency, supporting tasks like object detection.
Details
Model name:
yolo-nas-torch
Model source: https://github.com/Deci-AI/super-gradients
Exposes embeddings? no
Tags:
detection, torch, yolo
Requirements
Packages:
torch, torchvision, super-gradients
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo-nas-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11l-coco-torch¶
YOLO11-L model trained on COCO.
Details
Model name:
yolo11l-coco-torch
Model source: https://docs.ultralytics.com/models/yolov11/
Model size: 49.01 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11l-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11l-seg-coco-torch¶
YOLO11-L Segmentation model trained on COCO.
Details
Model name:
yolo11l-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolo11/#__tabbed_1_2
Model size: 53.50 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11l-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11m-coco-torch¶
YOLO11-M model trained on COCO.
Details
Model name:
yolo11m-coco-torch
Model source: https://docs.ultralytics.com/models/yolov11/
Model size: 38.80 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11m-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11m-seg-coco-torch¶
YOLO11-M Segmentation model trained on COCO.
Details
Model name:
yolo11m-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolo11/#__tabbed_1_2
Model size: 43.30 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11m-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11n-coco-torch¶
YOLO11-N model trained on COCO.
Details
Model name:
yolo11n-coco-torch
Model source: https://docs.ultralytics.com/models/yolov11/
Model size: 5.35 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11n-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11n-seg-coco-torch¶
YOLO11-N Segmentation model trained on COCO.
Details
Model name:
yolo11n-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolo11/#__tabbed_1_2
Model size: 5.90 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11n-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11s-coco-torch¶
YOLO11-S model trained on COCO.
Details
Model name:
yolo11s-coco-torch
Model source: https://docs.ultralytics.com/models/yolov11/
Model size: 18.42 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11s-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11s-seg-coco-torch¶
YOLO11-S Segmentation model trained on COCO.
Details
Model name:
yolo11s-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolo11/#__tabbed_1_2
Model size: 19.71 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11s-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11x-coco-torch¶
YOLO11-X model trained on COCO.
Details
Model name:
yolo11x-coco-torch
Model source: https://docs.ultralytics.com/models/yolov11/
Model size: 109.33 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11x-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo11x-seg-coco-torch¶
YOLO11-X Segmentation model trained on COCO.
Details
Model name:
yolo11x-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolo11/#__tabbed_1_2
Model size: 119.30 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo11x-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov10l-coco-torch¶
YOLOv10-L model trained on COCO.
Details
Model name:
yolov10l-coco-torch
Model source: https://docs.ultralytics.com/models/yolov10/
Model size: 50.00 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov10l-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov10m-coco-torch¶
YOLOv10-M model trained on COCO.
Details
Model name:
yolov10m-coco-torch
Model source: https://docs.ultralytics.com/models/yolov10/
Model size: 32.09 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov10m-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov10n-coco-torch¶
YOLOv10-N model trained on COCO.
Details
Model name:
yolov10n-coco-torch
Model source: https://docs.ultralytics.com/models/yolov10/
Model size: 5.59 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov10n-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov10s-coco-torch¶
YOLOv10-S model trained on COCO.
Details
Model name:
yolov10s-coco-torch
Model source: https://docs.ultralytics.com/models/yolov10/
Model size: 15.85 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov10s-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov10x-coco-torch¶
YOLOv10-X model trained on COCO.
Details
Model name:
yolov10x-coco-torch
Model source: https://docs.ultralytics.com/models/yolov10/
Model size: 61.41 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov10x-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov5l-coco-torch¶
Ultralytics YOLOv5l model trained on COCO.
Details
Model name:
yolov5l-coco-torch
Model source: https://pytorch.org/hub/ultralytics_yolov5
Model size: 192.88 KB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov5l-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov5m-coco-torch¶
Ultralytics YOLOv5m model trained on COCO.
Details
Model name:
yolov5m-coco-torch
Model source: https://pytorch.org/hub/ultralytics_yolov5
Model size: 81.91 KB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov5m-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov5n-coco-torch¶
Ultralytics YOLOv5n model trained on COCO.
Details
Model name:
yolov5n-coco-torch
Model source: https://pytorch.org/hub/ultralytics_yolov5
Model size: 7.75 KB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov5n-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov5s-coco-torch¶
Ultralytics YOLOv5s model trained on COCO.
Details
Model name:
yolov5s-coco-torch
Model source: https://pytorch.org/hub/ultralytics_yolov5
Model size: 28.25 KB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov5s-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov5x-coco-torch¶
Ultralytics YOLOv5x model trained on COCO.
Details
Model name:
yolov5x-coco-torch
Model source: https://pytorch.org/hub/ultralytics_yolov5
Model size: 352.05 KB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov5x-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8l-coco-torch¶
Ultralytics YOLOv8l model trained on COCO.
Details
Model name:
yolov8l-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 83.70 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8l-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8l-obb-dotav1-torch¶
YOLOv8l Oriented Bounding Box model.
Details
Model name:
yolov8l-obb-dotav1-torch
Model source: https://docs.ultralytics.com/tasks/obb/
Model size: 85.36 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, polylines, obb
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8l-obb-dotav1-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8l-oiv7-torch¶
Ultralytics YOLOv8l model trained Open Images v7.
Details
Model name:
yolov8l-oiv7-torch
Model source: https://docs.ultralytics.com/datasets/detect/open-images-v7
Model size: 83.70 MB
Exposes embeddings? no
Tags:
detection, oiv7, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8l-oiv7-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8l-seg-coco-torch¶
Ultralytics YOLOv8l Segmentation model trained on COCO.
Details
Model name:
yolov8l-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 88.11 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8l-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8l-world-torch¶
YOLOv8l-World model.
Details
Model name:
yolov8l-world-torch
Model source: https://docs.ultralytics.com/models/yolo-world/
Model size: 91.23 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, zero-shot
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8l-world-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8m-coco-torch¶
Ultralytics YOLOv8m model trained on COCO.
Details
Model name:
yolov8m-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 49.70 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8m-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8m-obb-dotav1-torch¶
YOLOv8m Oriented Bounding Box model.
Details
Model name:
yolov8m-obb-dotav1-torch
Model source: https://docs.ultralytics.com/tasks/obb/
Model size: 50.84 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, polylines, obb
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8m-obb-dotav1-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8m-oiv7-torch¶
Ultralytics YOLOv8m model trained Open Images v7.
Details
Model name:
yolov8m-oiv7-torch
Model source: https://docs.ultralytics.com/datasets/detect/open-images-v7
Model size: 49.70 MB
Exposes embeddings? no
Tags:
detection, oiv7, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8m-oiv7-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8m-seg-coco-torch¶
Ultralytics YOLOv8m Segmentation model trained on COCO.
Details
Model name:
yolov8m-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 52.36 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8m-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8m-world-torch¶
YOLOv8m-World model.
Details
Model name:
yolov8m-world-torch
Model source: https://docs.ultralytics.com/models/yolo-world/
Model size: 55.89 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, zero-shot
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8m-world-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8n-coco-torch¶
Ultralytics YOLOv8n model trained on COCO.
Details
Model name:
yolov8n-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 6.23 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8n-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8n-obb-dotav1-torch¶
YOLOv8n Oriented Bounding Box model.
Details
Model name:
yolov8n-obb-dotav1-torch
Model source: https://docs.ultralytics.com/tasks/obb/
Model size: 6.24 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, polylines, obb
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8n-obb-dotav1-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8n-oiv7-torch¶
Ultralytics YOLOv8n model trained on Open Images v7.
Details
Model name:
yolov8n-oiv7-torch
Model source: https://docs.ultralytics.com/datasets/detect/open-images-v7
Model size: 6.23 MB
Exposes embeddings? no
Tags:
detection, oiv7, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8n-oiv7-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8n-seg-coco-torch¶
Ultralytics YOLOv8n Segmentation model trained on COCO.
Details
Model name:
yolov8n-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 6.73 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8n-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8s-coco-torch¶
Ultralytics YOLOv8s model trained on COCO.
Details
Model name:
yolov8s-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 21.53 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8s-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8s-obb-dotav1-torch¶
YOLOv8s Oriented Bounding Box model.
Details
Model name:
yolov8s-obb-dotav1-torch
Model source: https://docs.ultralytics.com/tasks/obb/
Model size: 22.17 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, polylines, obb
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8s-obb-dotav1-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8s-oiv7-torch¶
Ultralytics YOLOv8s model trained on Open Images v7.
Details
Model name:
yolov8s-oiv7-torch
Model source: https://docs.ultralytics.com/datasets/detect/open-images-v7
Model size: 21.53 MB
Exposes embeddings? no
Tags:
detection, oiv7, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8s-oiv7-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8s-seg-coco-torch¶
Ultralytics YOLOv8s Segmentation model trained on COCO.
Details
Model name:
yolov8s-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 22.79 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8s-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8s-world-torch¶
YOLOv8s-World model.
Details
Model name:
yolov8s-world-torch
Model source: https://docs.ultralytics.com/models/yolo-world/
Model size: 25.91 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, zero-shot
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8s-world-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8x-coco-torch¶
Ultralytics YOLOv8x model trained on COCO.
Details
Model name:
yolov8x-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 130.53 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8x-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8x-obb-dotav1-torch¶
YOLOv8x Oriented Bounding Box model.
Details
Model name:
yolov8x-obb-dotav1-torch
Model source: https://docs.ultralytics.com/tasks/obb/
Model size: 133.07 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, polylines, obb
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8x-obb-dotav1-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8x-oiv7-torch¶
Ultralytics YOLOv8x model trained Open Images v7.
Details
Model name:
yolov8x-oiv7-torch
Model source: https://docs.ultralytics.com/datasets/detect/open-images-v7
Model size: 130.53 MB
Exposes embeddings? no
Tags:
detection, oiv7, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8x-oiv7-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8x-seg-coco-torch¶
Ultralytics YOLOv8x Segmentation model trained on COCO.
Details
Model name:
yolov8x-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov8/
Model size: 137.40 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8x-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov8x-world-torch¶
YOLOv8x-World model.
Details
Model name:
yolov8x-world-torch
Model source: https://docs.ultralytics.com/models/yolo-world/
Model size: 141.11 MB
Exposes embeddings? no
Tags:
detection, torch, yolo, zero-shot
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov8x-world-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov9c-coco-torch¶
YOLOv9-C model trained on COCO.
Details
Model name:
yolov9c-coco-torch
Model source: https://docs.ultralytics.com/models/yolov9/
Model size: 49.40 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov9c-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov9c-seg-coco-torch¶
YOLOv9-C Segmentation model trained on COCO.
Details
Model name:
yolov9c-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov9/#__tabbed_1_2
Model size: 107.20 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.42
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov9c-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov9e-coco-torch¶
YOLOv9-E model trained on COCO.
Details
Model name:
yolov9e-coco-torch
Model source: https://docs.ultralytics.com/models/yolov9/
Model size: 112.09 MB
Exposes embeddings? no
Tags:
detection, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov9e-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolov9e-seg-coco-torch¶
YOLOv9-E Segmentation model trained on COCO.
Details
Model name:
yolov9e-seg-coco-torch
Model source: https://docs.ultralytics.com/models/yolov9/#__tabbed_1_2
Model size: 232.20 MB
Exposes embeddings? no
Tags:
segmentation, coco, torch, yolo
Requirements
Packages:
torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.42
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolov9e-seg-coco-torch") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
zero-shot-classification-transformer-torch¶
Hugging Face Transformers model for zero-shot image classification.
Details
Model name:
zero-shot-classification-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/zero_shot_image_classification
Exposes embeddings? yes
Tags:
classification, logits, embeddings, torch, transformers, zero-shot
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model( "zero-shot-classification-transformer-torch", classes=["person", "dog", "cat", "bird", "car", "tree", "chair"], ) dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
zero-shot-detection-transformer-torch¶
Hugging Face Transformers model for zero-shot object detection.
Details
Model name:
zero-shot-detection-transformer-torch
Model source: https://huggingface.co/docs/transformers/tasks/zero_shot_object_detection
Exposes embeddings? yes
Tags:
detection, logits, embeddings, torch, transformers, zero-shot
Requirements
Packages:
torch, torchvision, transformers
CPU support
yes
GPU support
yes
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model( "zero-shot-detection-transformer-torch", classes=["person", "dog", "cat", "bird", "car", "tree", "chair"], ) dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
TensorFlow models¶
centernet-hg104-1024-coco-tf2¶
CenterNet model from Objects as Points with the Hourglass-104 backbone trained on COCO resized to 1024x1024.
Details
Model name:
centernet-hg104-1024-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 1.33 GB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-hg104-1024-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
centernet-hg104-512-coco-tf2¶
CenterNet model from Objects as Points with the Hourglass-104 backbone trained on COCO resized to 512x512.
Details
Model name:
centernet-hg104-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 1.49 GB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-hg104-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
centernet-mobilenet-v2-fpn-512-coco-tf2¶
CenterNet model from Objects as Points with the MobileNetV2 backbone trained on COCO resized to 512x512.
Details
Model name:
centernet-mobilenet-v2-fpn-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 41.98 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-mobilenet-v2-fpn-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
centernet-resnet101-v1-fpn-512-coco-tf2¶
CenterNet model from Objects as Points with the ResNet-101v1 backbone + FPN trained on COCO resized to 512x512.
Details
Model name:
centernet-resnet101-v1-fpn-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 329.96 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet, resnet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-resnet101-v1-fpn-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
centernet-resnet50-v1-fpn-512-coco-tf2¶
CenterNet model from Objects as Points with the ResNet-50-v1 backbone + FPN trained on COCO resized to 512x512.
Details
Model name:
centernet-resnet50-v1-fpn-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 194.61 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet, resnet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-resnet50-v1-fpn-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
centernet-resnet50-v2-512-coco-tf2¶
CenterNet model from Objects as Points with the ResNet-50v2 backbone trained on COCO resized to 512x512.
Details
Model name:
centernet-resnet50-v2-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 226.95 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, centernet, resnet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("centernet-resnet50-v2-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
deeplabv3-cityscapes-tf¶
DeepLabv3+ semantic segmentation model from Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation with Xception backbone trained on the Cityscapes dataset.
Details
Model name:
deeplabv3-cityscapes-tf
Model source: https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
Model size: 158.04 MB
Exposes embeddings? no
Tags:
segmentation, cityscapes, tf, deeplabv3
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("deeplabv3-cityscapes-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
deeplabv3-mnv2-cityscapes-tf¶
DeepLabv3+ semantic segmentation model from Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation with MobileNetV2 backbone trained on the Cityscapes dataset.
Details
Model name:
deeplabv3-mnv2-cityscapes-tf
Model source: https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/model_zoo.md
Model size: 8.37 MB
Exposes embeddings? no
Tags:
segmentation, cityscapes, tf, deeplabv3
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("deeplabv3-mnv2-cityscapes-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d0-512-coco-tf2¶
EfficientDet-D0 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 512x512.
Details
Model name:
efficientdet-d0-512-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 29.31 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d0-512-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d0-coco-tf1¶
EfficientDet-D0 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d0-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 38.20 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d0-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d1-640-coco-tf2¶
EfficientDet-D1 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 640x640.
Details
Model name:
efficientdet-d1-640-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 49.44 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d1-640-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d1-coco-tf1¶
EfficientDet-D1 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d1-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 61.64 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d1-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d2-768-coco-tf2¶
EfficientDet-D2 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 768x768.
Details
Model name:
efficientdet-d2-768-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 60.01 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d2-768-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d2-coco-tf1¶
EfficientDet-D2 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d2-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 74.00 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d2-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d3-896-coco-tf2¶
EfficientDet-D3 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 896x896.
Details
Model name:
efficientdet-d3-896-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 88.56 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d3-896-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d3-coco-tf1¶
EfficientDet-D3 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d3-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 106.44 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d3-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d4-1024-coco-tf2¶
EfficientDet-D4 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1024x1024.
Details
Model name:
efficientdet-d4-1024-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 151.15 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d4-1024-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d4-coco-tf1¶
EfficientDet-D4 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d4-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 175.33 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d4-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d5-1280-coco-tf2¶
EfficientDet-D5 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1280x1280.
Details
Model name:
efficientdet-d5-1280-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 244.41 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d5-1280-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d5-coco-tf1¶
EfficientDet-D5 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d5-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 275.81 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d5-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d6-1280-coco-tf2¶
EfficientDet-D6 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1280x1280.
Details
Model name:
efficientdet-d6-1280-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 375.63 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d6-1280-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d6-coco-tf1¶
EfficientDet-D6 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.
Details
Model name:
efficientdet-d6-coco-tf1
Model source: https://github.com/voxel51/automl/tree/master/efficientdet
Model size: 416.43 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=1.14,<2
GPU support
yes
Packages:
tensorflow-gpu>=1.14,<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d6-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
efficientdet-d7-1536-coco-tf2¶
EfficientDet-D7 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1536x1536.
Details
Model name:
efficientdet-d7-1536-coco-tf2
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 376.20 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, efficientdet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("efficientdet-d7-1536-coco-tf2") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-inception-resnet-atrous-v2-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks atrous version with Inception backbone trained on COCO.
Details
Model name:
faster-rcnn-inception-resnet-atrous-v2-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 234.46 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, inception, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-inception-resnet-atrous-v2-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks atrous version with low-proposals and Inception backbone trained on COCO.
Details
Model name:
faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 234.46 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, inception, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-inception-v2-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with Inception v2 backbone trained on COCO.
Details
Model name:
faster-rcnn-inception-v2-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 52.97 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, inception
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-inception-v2-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-nas-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with NAS-net backbone trained on COCO.
Details
Model name:
faster-rcnn-nas-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 404.95 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-nas-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-nas-lowproposals-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and NAS-net backbone trained on COCO.
Details
Model name:
faster-rcnn-nas-lowproposals-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 404.88 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-nas-lowproposals-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-resnet101-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-101 backbone trained on COCO.
Details
Model name:
faster-rcnn-resnet101-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 186.41 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-resnet101-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-resnet101-lowproposals-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and ResNet-101 backbone trained on COCO.
Details
Model name:
faster-rcnn-resnet101-lowproposals-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 186.41 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-resnet101-lowproposals-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-resnet50-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-50 backbone trained on COCO.
Details
Model name:
faster-rcnn-resnet50-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 113.57 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-resnet50-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
faster-rcnn-resnet50-lowproposals-coco-tf¶
Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and ResNet-50 backbone trained on COCO.
Details
Model name:
faster-rcnn-resnet50-lowproposals-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 113.57 MB
Exposes embeddings? no
Tags:
detection, coco, tf, faster-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("faster-rcnn-resnet50-lowproposals-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
inception-resnet-v2-imagenet-tf1¶
Inception v2 model from Rethinking the Inception Architecture for Computer Vision trained on ImageNet.
Details
Model name:
inception-resnet-v2-imagenet-tf1
Model source: https://github.com/tensorflow/models/tree/archive/research/slim#pre-trained-models
Model size: 213.81 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, inception, resnet
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("inception-resnet-v2-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
inception-v4-imagenet-tf1¶
Inception v4 model from Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning trained on ImageNet.
Details
Model name:
inception-v4-imagenet-tf1
Model source: https://github.com/tensorflow/models/tree/archive/research/slim#pre-trained-models
Model size: 163.31 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, inception
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("inception-v4-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mask-rcnn-inception-resnet-v2-atrous-coco-tf¶
Mask R-CNN model from Mask R-CNN atrous version with Inception backbone trained on COCO.
Details
Model name:
mask-rcnn-inception-resnet-v2-atrous-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 254.51 MB
Exposes embeddings? no
Tags:
instances, coco, tf, mask-rcnn, inception, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mask-rcnn-inception-resnet-v2-atrous-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mask-rcnn-inception-v2-coco-tf¶
Mask R-CNN model from Mask R-CNN with Inception backbone trained on COCO.
Details
Model name:
mask-rcnn-inception-v2-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 64.03 MB
Exposes embeddings? no
Tags:
instances, coco, tf, mask-rcnn, inception
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mask-rcnn-inception-v2-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mask-rcnn-resnet101-atrous-coco-tf¶
Mask R-CNN model from Mask R-CNN atrous version with ResNet-101 backbone trained on COCO.
Details
Model name:
mask-rcnn-resnet101-atrous-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 211.56 MB
Exposes embeddings? no
Tags:
instances, coco, tf, mask-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mask-rcnn-resnet101-atrous-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mask-rcnn-resnet50-atrous-coco-tf¶
Mask R-CNN model from Mask R-CNN atrous version with ResNet-50 backbone trained on COCO.
Details
Model name:
mask-rcnn-resnet50-atrous-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 138.29 MB
Exposes embeddings? no
Tags:
instances, coco, tf, mask-rcnn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mask-rcnn-resnet50-atrous-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
mobilenet-v2-imagenet-tf1¶
MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks trained on ImageNet.
Details
Model name:
mobilenet-v2-imagenet-tf1
Model source: None
Model size: 13.64 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("mobilenet-v2-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet-v1-50-imagenet-tf1¶
ResNet-50 v1 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet-v1-50-imagenet-tf1
Model source: https://github.com/tensorflow/models/tree/archive/research/slim#pre-trained-models
Model size: 97.84 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, resnet
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet-v1-50-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
resnet-v2-50-imagenet-tf1¶
ResNet-50 v2 model from Deep Residual Learning for Image Recognition trained on ImageNet.
Details
Model name:
resnet-v2-50-imagenet-tf1
Model source: https://github.com/tensorflow/models/tree/archive/research/slim#pre-trained-models
Model size: 97.86 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, resnet
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("resnet-v2-50-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
rfcn-resnet101-coco-tf¶
R-FCN object detection model from R-FCN: Object Detection via Region-based Fully Convolutional Networks with ResNet-101 backbone trained on COCO.
Details
Model name:
rfcn-resnet101-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 208.16 MB
Exposes embeddings? no
Tags:
detection, coco, tf, rfcn, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("rfcn-resnet101-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-inception-v2-coco-tf¶
Inception Single Shot Detector model from SSD: Single Shot MultiBox Detector trained on COCO.
Details
Model name:
ssd-inception-v2-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 97.50 MB
Exposes embeddings? no
Tags:
detection, coco, tf, ssd, inception
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-inception-v2-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-mobilenet-v1-coco-tf¶
Single Shot Detector model from SSD: Single Shot MultiBox Detector with MobileNetV1 backbone trained on COCO.
Details
Model name:
ssd-mobilenet-v1-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 27.83 MB
Exposes embeddings? no
Tags:
detection, coco, tf, ssd, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-mobilenet-v1-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-mobilenet-v1-fpn-640-coco17¶
MobileNetV1 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks resized to 640x640.
Details
Model name:
ssd-mobilenet-v1-fpn-640-coco17
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 43.91 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, ssd, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-mobilenet-v1-fpn-640-coco17") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-mobilenet-v1-fpn-coco-tf¶
FPN Single Shot Detector model from SSD: Single Shot MultiBox Detector with MobileNetV1 backbone trained on COCO.
Details
Model name:
ssd-mobilenet-v1-fpn-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 48.97 MB
Exposes embeddings? no
Tags:
detection, coco, tf, ssd, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-mobilenet-v1-fpn-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-mobilenet-v2-320-coco17¶
MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks resized to 320x320.
Details
Model name:
ssd-mobilenet-v2-320-coco17
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf2_detection_zoo.md
Model size: 43.91 MB
Exposes embeddings? no
Tags:
detection, coco, tf2, ssd, mobilenet
Requirements
CPU support
yes
Packages:
tensorflow>=2|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-mobilenet-v2-320-coco17") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
ssd-resnet50-fpn-coco-tf¶
FPN Single Shot Detector model from SSD: Single Shot MultiBox Detector with ResNet-50 backbone trained on COCO.
Details
Model name:
ssd-resnet50-fpn-coco-tf
Model source: https://github.com/tensorflow/models/blob/archive/research/object_detection/g3doc/tf1_detection_zoo.md
Model size: 128.07 MB
Exposes embeddings? no
Tags:
detection, coco, tf, ssd, resnet
Requirements
CPU support
yes
Packages:
tensorflow|tensorflow-macos
GPU support
yes
Packages:
tensorflow-gpu|tensorflow>=2|tensorflow-macos
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("ssd-resnet50-fpn-coco-tf") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
vgg16-imagenet-tf1¶
VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.
Details
Model name:
vgg16-imagenet-tf1
Model source: https://gist.github.com/ksimonyan/211839e770f7b538e2d8#file-readme-md
Model size: 527.80 MB
Exposes embeddings? yes
Tags:
classification, embeddings, logits, imagenet, tf1, vgg
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "imagenet-sample", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("vgg16-imagenet-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |
yolo-v2-coco-tf1¶
YOLOv2 model from YOLO9000: Better, Faster, Stronger trained on COCO.
Details
Model name:
yolo-v2-coco-tf1
Model source: https://github.com/thtrieu/darkflow
Model size: 194.49 MB
Exposes embeddings? no
Tags:
detection, coco, tf1, yolo
Requirements
CPU support
yes
Packages:
tensorflow<2
GPU support
yes
Packages:
tensorflow-gpu<2
Example usage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import fiftyone as fo import fiftyone.zoo as foz dataset = foz.load_zoo_dataset( "coco-2017", split="validation", dataset_name=fo.get_default_dataset_name(), max_samples=50, shuffle=True, ) model = foz.load_zoo_model("yolo-v2-coco-tf1") dataset.apply_model(model, label_field="predictions") session = fo.launch_app(dataset) |