Run in Google Colab | View source on GitHub | Download notebook |
Writing Custom Dataset Importers¶
This recipe demonstrates how to write a custom DatasetImporter and use it to load a dataset from disk in your custom format into FiftyOne.
Setup¶
If you haven’t already, install FiftyOne:
[ ]:
!pip install fiftyone
In this recipe we’ll use the FiftyOne Dataset Zoo to download the CIFAR-10 dataset to use as sample data to feed our custom importer.
Behind the scenes, FiftyOne either uses the TensorFlow Datasets or TorchVision Datasets libraries to wrangle the datasets, depending on which ML library you have installed.
You can, for example, install PyTorch as follows:
[ ]:
!pip install torch torchvision
Writing a DatasetImporter¶
FiftyOne provides a DatasetImporter interface that defines how it imports datasets from disk when methods such as Dataset.from_importer() are used.
DatasetImporter
itself is an abstract interface; the concrete interface that you should implement is determined by the type of dataset that you are importing. See writing a custom DatasetImporter for full details.
In this recipe, we’ll write a custom LabeledImageDatasetImporter that can import an image classification dataset whose image metadata and labels are stored in a labels.csv
file in the dataset directory with the following format:
filepath,size_bytes,mime_type,width,height,num_channels,label
<filepath>,<size_bytes>,<mime_type>,<width>,<height>,<num_channels>,<label>
<filepath>,<size_bytes>,<mime_type>,<width>,<height>,<num_channels>,<label>
...
Here’s the complete definition of the DatasetImporter
:
[3]:
import csv
import os
import fiftyone as fo
import fiftyone.utils.data as foud
class CSVImageClassificationDatasetImporter(foud.LabeledImageDatasetImporter):
"""Importer for image classification datasets whose filepaths and labels
are stored on disk in a CSV file.
Datasets of this type should contain a ``labels.csv`` file in their
dataset directories in the following format::
filepath,size_bytes,mime_type,width,height,num_channels,label
<filepath>,<size_bytes>,<mime_type>,<width>,<height>,<num_channels>,<label>
<filepath>,<size_bytes>,<mime_type>,<width>,<height>,<num_channels>,<label>
...
Args:
dataset_dir: the dataset directory
shuffle (False): whether to randomly shuffle the order in which the
samples are imported
seed (None): a random seed to use when shuffling
max_samples (None): a maximum number of samples to import. By default,
all samples are imported
"""
def __init__(
self,
dataset_dir,
shuffle=False,
seed=None,
max_samples=None,
):
super().__init__(
dataset_dir=dataset_dir,
shuffle=shuffle,
seed=seed,
max_samples=max_samples
)
self._labels_file = None
self._labels = None
self._iter_labels = None
def __iter__(self):
self._iter_labels = iter(self._labels)
return self
def __next__(self):
"""Returns information about the next sample in the dataset.
Returns:
an ``(image_path, image_metadata, label)`` tuple, where
- ``image_path``: the path to the image on disk
- ``image_metadata``: an
:class:`fiftyone.core.metadata.ImageMetadata` instances for the
image, or ``None`` if :meth:`has_image_metadata` is ``False``
- ``label``: an instance of :meth:`label_cls`, or a dictionary
mapping field names to :class:`fiftyone.core.labels.Label`
instances, or ``None`` if the sample is unlabeled
Raises:
StopIteration: if there are no more samples to import
"""
(
filepath,
size_bytes,
mime_type,
width,
height,
num_channels,
label,
) = next(self._iter_labels)
image_metadata = fo.ImageMetadata(
size_bytes=size_bytes,
mime_type=mime_type,
width=width,
height=height,
num_channels=num_channels,
)
label = fo.Classification(label=label)
return filepath, image_metadata, label
def __len__(self):
"""The total number of samples that will be imported.
Raises:
TypeError: if the total number is not known
"""
return len(self._labels)
@property
def has_dataset_info(self):
"""Whether this importer produces a dataset info dictionary."""
return False
@property
def has_image_metadata(self):
"""Whether this importer produces
:class:`fiftyone.core.metadata.ImageMetadata` instances for each image.
"""
return True
@property
def label_cls(self):
"""The :class:`fiftyone.core.labels.Label` class(es) returned by this
importer.
This can be any of the following:
- a :class:`fiftyone.core.labels.Label` class. In this case, the
importer is guaranteed to return labels of this type
- a list or tuple of :class:`fiftyone.core.labels.Label` classes. In
this case, the importer can produce a single label field of any of
these types
- a dict mapping keys to :class:`fiftyone.core.labels.Label` classes.
In this case, the importer will return label dictionaries with keys
and value-types specified by this dictionary. Not all keys need be
present in the imported labels
- ``None``. In this case, the importer makes no guarantees about the
labels that it may return
"""
return fo.Classification
def setup(self):
"""Performs any necessary setup before importing the first sample in
the dataset.
This method is called when the importer's context manager interface is
entered, :func:`DatasetImporter.__enter__`.
"""
labels_path = os.path.join(self.dataset_dir, "labels.csv")
labels = []
with open(labels_path, "r") as f:
reader = csv.DictReader(f)
for row in reader:
labels.append((
row["filepath"],
row["size_bytes"],
row["mime_type"],
row["width"],
row["height"],
row["num_channels"],
row["label"],
))
# The `_preprocess_list()` function is provided by the base class
# and handles shuffling/max sample limits
self._labels = self._preprocess_list(labels)
def close(self, *args):
"""Performs any necessary actions after the last sample has been
imported.
This method is called when the importer's context manager interface is
exited, :func:`DatasetImporter.__exit__`.
Args:
*args: the arguments to :func:`DatasetImporter.__exit__`
"""
pass
Generating a sample dataset¶
In order to use CSVImageClassificationDatasetImporter
, we need to generate a sample dataset in the required format.
Let’s first write a small utility to populate a labels.csv
file in the required format.
[4]:
def write_csv_labels(samples, csv_path, label_field="ground_truth"):
"""Writes a labels CSV format for the given samples in the format expected
by :class:`CSVImageClassificationDatasetImporter`.
Args:
samples: an iterable of :class:`fiftyone.core.sample.Sample` instances
csv_path: the path to write the CSV file
label_field ("ground_truth"): the label field of the samples to write
"""
# Ensure base directory exists
basedir = os.path.dirname(csv_path)
if basedir and not os.path.isdir(basedir):
os.makedirs(basedir)
# Write the labels
with open(csv_path, "w") as f:
writer = csv.writer(f)
writer.writerow([
"filepath",
"size_bytes",
"mime_type",
"width",
"height",
"num_channels",
"label",
])
for sample in samples:
filepath = sample.filepath
metadata = sample.metadata
if metadata is None:
metadata = fo.ImageMetadata.build_for(filepath)
label = sample[label_field].label
writer.writerow([
filepath,
metadata.size_bytes,
metadata.mime_type,
metadata.width,
metadata.height,
metadata.num_channels,
label,
])
Now let’s populate a directory with a labels.csv
file in the format required by CSVImageClassificationDatasetImporter
with some samples from the test split of CIFAR-10:
[7]:
import fiftyone.zoo as foz
dataset_dir = "/tmp/fiftyone/custom-dataset-importer"
num_samples = 1000
#
# Load `num_samples` from CIFAR-10
#
# This command will download the test split of CIFAR-10 from the web the first
# time it is executed, if necessary
#
cifar10_test = foz.load_zoo_dataset("cifar10", split="test")
samples = cifar10_test.limit(num_samples)
# This dataset format requires samples to have their `metadata` fields populated
print("Computing metadata for samples")
samples.compute_metadata()
# Write labels to disk in CSV format
csv_path = os.path.join(dataset_dir, "labels.csv")
print("Writing labels for %d samples to '%s'" % (num_samples, csv_path))
write_csv_labels(samples, csv_path)
Split 'test' already downloaded
Loading existing dataset 'cifar10-test'. To reload from disk, first delete the existing dataset
Computing metadata for samples
100% |█████| 1000/1000 [421.2ms elapsed, 0s remaining, 2.4K samples/s]
Writing labels for 1000 samples to '/tmp/fiftyone/custom-dataset-importer/labels.csv'
Let’s inspect the contents of the labels CSV to ensure they’re in the correct format:
[13]:
!head -n 10 /tmp/fiftyone/custom-dataset-importer/labels.csv
filepath,size_bytes,mime_type,width,height,num_channels,label
~/fiftyone/cifar10/test/data/000001.jpg,1422,image/jpeg,32,32,3,cat
~/fiftyone/cifar10/test/data/000002.jpg,1285,image/jpeg,32,32,3,ship
~/fiftyone/cifar10/test/data/000003.jpg,1258,image/jpeg,32,32,3,ship
~/fiftyone/cifar10/test/data/000004.jpg,1244,image/jpeg,32,32,3,airplane
~/fiftyone/cifar10/test/data/000005.jpg,1388,image/jpeg,32,32,3,frog
~/fiftyone/cifar10/test/data/000006.jpg,1311,image/jpeg,32,32,3,frog
~/fiftyone/cifar10/test/data/000007.jpg,1412,image/jpeg,32,32,3,automobile
~/fiftyone/cifar10/test/data/000008.jpg,1218,image/jpeg,32,32,3,frog
~/fiftyone/cifar10/test/data/000009.jpg,1262,image/jpeg,32,32,3,cat
Importing a dataset¶
With our dataset and DatasetImporter
in-hand, loading the data as a FiftyOne dataset is as simple as follows:
[14]:
# Import the dataset
print("Importing dataset from '%s'" % dataset_dir)
importer = CSVImageClassificationDatasetImporter(dataset_dir)
dataset = fo.Dataset.from_importer(importer)
Importing dataset from '/tmp/fiftyone/custom-dataset-importer'
100% |█████| 1000/1000 [780.7ms elapsed, 0s remaining, 1.3K samples/s]
[15]:
# Print summary information about the dataset
print(dataset)
Name: 2020.07.14.22.33.01
Persistent: False
Num samples: 1000
Tags: []
Sample fields:
filepath: fiftyone.core.fields.StringField
tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.Metadata)
ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Classification)
[16]:
# Print a sample
print(dataset.first())
<Sample: {
'dataset_name': '2020.07.14.22.33.01',
'id': '5f0e6add1dfd5f8c299ac528',
'filepath': '~/fiftyone/cifar10/test/data/000001.jpg',
'tags': BaseList([]),
'metadata': <ImageMetadata: {
'size_bytes': 1422,
'mime_type': 'image/jpeg',
'width': 32,
'height': 32,
'num_channels': 3,
}>,
'ground_truth': <Classification: {'label': 'cat', 'confidence': None, 'logits': None}>,
}>