fiftyone.utils.annotations¶
Annotation utilities.
Functions:
|
Returns an API instance connected to the annotation backend. |
|
Exports the samples and optional label field(s) to the given annotation backend. |
|
Downloads the labels from the given annotation run from the annotation backend and merges them into the collection. |
|
Renders annotated versions of the images in the collection with the specified label data overlaid to the given directory. |
|
Renders an annotated version of the sample’s image with the specified label data overlaid to disk. |
|
Renders annotated versions of the videos in the collection with the specified label data overlaid to the given directory. |
|
Renders an annotated version of the sample’s video with the specified label data overlaid to disk. |
Classes:
|
Base class for configuring an |
|
Base class for annotation backends. |
|
Base class for storing the intermediate results of an annotation run that has been initiated and is waiting for its results to be merged back into the FiftyOne dataset. |
Base class for APIs that connect to annotation backends. |
|
|
Configuration class that controls the look-and-feel of the annotations rendered on images/videos. |
-
fiftyone.utils.annotations.
connect_to_api
(backend=None, **kwargs)¶ Returns an API instance connected to the annotation backend.
Some annotation backends may not expose this functionality.
- Parameters
backend (None) – the annotation backend to use. The supported values are
fiftyone.annotation_config.backends.keys()
and the default isfiftyone.annotation_config.default_backend
**kwargs – keyword arguments for the
AnnotationBackendConfig
subclass of the backend being used
- Returns
-
fiftyone.utils.annotations.
annotate
(samples, anno_key, label_schema=None, label_field=None, label_type=None, classes=None, attributes=True, mask_targets=None, allow_additions=True, allow_deletions=True, allow_label_edits=True, allow_index_edits=True, allow_spatial_edits=True, media_field='filepath', backend=None, launch_editor=False, **kwargs)¶ Exports the samples and optional label field(s) to the given annotation backend.
The
backend
parameter controls which annotation backend to use. Depending on the backend you use, you may want/need to provide extra keyword arguments to this function for the constructor of the backend’sAnnotationBackendConfig
class.The natively provided backends and their associated config classes are:
"labelstudio"
:fiftyone.utils.labelstudio.LabelStudioBackendConfig
"labelbox"
:fiftyone.utils.labelbox.LabelboxBackendConfig
See this page for more information about using this method, including how to define label schemas and how to configure login credentials for your annotation provider.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
anno_key – a string key to use to refer to this annotation run
label_schema (None) – a dictionary defining the label schema to use. If this argument is provided, it takes precedence over the other schema-related arguments
label_field (None) – a string indicating a new or existing label field to annotate
label_type (None) –
a string indicating the type of labels to annotate. The possible values are:
"classification"
: a single classification stored infiftyone.core.labels.Classification
fields"classifications"
: multilabel classifications stored infiftyone.core.labels.Classifications
fields"detections"
: object detections stored infiftyone.core.labels.Detections
fields"instances"
: instance segmentations stored infiftyone.core.labels.Detections
fields with theirmask
attributes populated"polylines"
: polylines stored infiftyone.core.labels.Polylines
fields with theirfilled
attributes set toFalse
"polygons"
: polygons stored infiftyone.core.labels.Polylines
fields with theirfilled
attributes set toTrue
"keypoints"
: keypoints stored infiftyone.core.labels.Keypoints
fields"segmentation"
: semantic segmentations stored infiftyone.core.labels.Segmentation
fields"scalar"
: scalar labels stored infiftyone.core.fields.IntField
,fiftyone.core.fields.FloatField
,fiftyone.core.fields.StringField
, orfiftyone.core.fields.BooleanField
fields
All new label fields must have their type specified via this argument or in
label_schema
. Note that annotation backends may not support all label typesclasses (None) – a list of strings indicating the class options for
label_field
or all fields inlabel_schema
without classes specified. All new label fields must have a class list provided via one of the supported methods. For existing label fields, if classes are not provided by this argument norlabel_schema
, the observed labels on your dataset are usedattributes (True) –
specifies the label attributes of each label field to include (other than their
label
, which is always included) in the annotation export. Can be any of the following:True
: export all label attributesFalse
: don’t export any custom label attributesan attribute or list of attributes to export
a dict mapping attribute names to dicts specifying the details of the attribute field
If a
label_schema
is also provided, this parameter determines which attributes are included for all fields that do not explicitly define their per-field attributes (in addition to any per-class attributes)mask_targets (None) – a dict mapping pixel values to semantic label strings. Only applicable when annotating semantic segmentations
allow_additions (True) – whether to allow new labels to be added. Only applicable when editing existing label fields
allow_deletions (True) – whether to allow labels to be deleted. Only applicable when editing existing label fields
allow_label_edits (True) – whether to allow the
label
attribute of existing labels to be modified. Only applicable when editing existing fields withlabel
attributesallow_index_edits (True) – whether to allow the
index
attribute of existing video tracks to be modified. Only applicable when editing existing frame fields withindex
attributesallow_spatial_edits (True) – whether to allow edits to the spatial properties (bounding boxes, vertices, keypoints, masks, etc) of labels. Only applicable when editing existing spatial label fields
media_field ("filepath") – the field containing the paths to the media files to upload
backend (None) – the annotation backend to use. The supported values are
fiftyone.annotation_config.backends.keys()
and the default isfiftyone.annotation_config.default_backend
launch_editor (False) – whether to launch the annotation backend’s editor after uploading the samples
**kwargs – keyword arguments for the
AnnotationBackendConfig
subclass of the backend being used
- Returns
-
fiftyone.utils.annotations.
load_annotations
(samples, anno_key, dest_field=None, unexpected='prompt', cleanup=False, progress=None, **kwargs)¶ Downloads the labels from the given annotation run from the annotation backend and merges them into the collection.
See this page for more information about using this method to import annotations that you have scheduled by calling
annotate()
.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
anno_key – an annotation key
dest_field (None) – an optional name of a new destination field into which to load the annotations, or a dict mapping field names in the run’s label schema to new destination field names
unexpected ("prompt") –
how to deal with any unexpected labels that don’t match the run’s label schema when importing. The supported values are:
"prompt"
: present an interactive prompt to direct/discard unexpected labels"ignore"
: automatically ignore any unexpected labels"keep"
: automatically keep all unexpected labels in a field whose name matches the the label type"return"
: return a dict containing all unexpected labels, orNone
if there aren’t any
cleanup (False) – whether to delete any informtation regarding this run from the annotation backend after loading the annotations
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – keyword arguments for the run’s
fiftyone.core.annotation.AnnotationMethodConfig.load_credentials()
method
- Returns
None
, unlessunexpected=="return"
and unexpected labels are found, in which case a dict containing the extra labels is returned
-
class
fiftyone.utils.annotations.
AnnotationBackendConfig
(name, label_schema, media_field='filepath', **kwargs)¶ Bases:
fiftyone.core.annotation.AnnotationMethodConfig
Base class for configuring an
AnnotationBackend
instances.Subclasses are free to define additional keyword arguments if they desire.
- Parameters
name – the name of the backend
label_schema – a dictionary containing the description of label fields, classes and attributes to annotate
media_field ("filepath") – string field name containing the paths to media files on disk to upload
**kwargs – any leftover keyword arguments after subclasses have done their parsing
Attributes:
The name of the annotation backend.
The fully-qualified name of this
BaseRunConfig
class.The
BaseRun
class associated with this config.The type of run.
Methods:
load_credentials
(**kwargs)Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
serialize
(*args, **kwargs)Serializes the object into a dictionary.
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
-
property
method
¶ The name of the annotation backend.
-
load_credentials
(**kwargs)¶ Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters
**kwargs – subclass-specific credentials
-
serialize
(*args, **kwargs)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
attributes
()¶ Returns the list of class attributes that will be serialized by
serialize()
.- Returns
a list of attributes
-
static
base_config_cls
(type)¶ Returns the config class for the given run type.
- Parameters
type – a
BaseRunConfig.type
- Returns
a
BaseRunConfig
subclass
-
build
()¶ Builds the
BaseRun
instance associated with this config.- Returns
a
BaseRun
instance
-
classmethod
builder
()¶ Returns a ConfigBuilder instance for this class.
-
property
cls
¶ The fully-qualified name of this
BaseRunConfig
class.
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
default
()¶ Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
-
classmethod
from_dict
(d)¶ Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters
d – a JSON dict
- Returns
a
BaseRunConfig
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_kwargs
(**kwargs)¶ Constructs a Config object from keyword arguments.
- Parameters
**kwargs – keyword arguments that define the fields expected by cls
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
classmethod
load_default
()¶ Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
-
static
parse_array
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw array attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns
a list of raw (untouched) values
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_bool
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a boolean value.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns
True/False
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_categorical
(d, key, choices, default=<eta.core.config.NoDefault object>)¶ Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
-
static
parse_dict
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns
a dictionary
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_int
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses an integer attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns
an int
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_mutually_exclusive_fields
(fields)¶ Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Returns
the (field, value) that was set
- Raises
ConfigError – if zero or more than one truthy value was found
-
static
parse_number
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a number attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns
a number (e.g. int, float)
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns
an instance of cls
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_array
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns
a list of cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_dict
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns
a dictionary whose values are cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_path
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a path string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_raw
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw (arbitrary) JSON field.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field
- Raises
ConfigError – if no default value was provided and the key was not found in the dictionary
-
static
parse_string
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a string attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
property
run_cls
¶ The
BaseRun
class associated with this config.
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
property
type
¶ The type of run.
-
static
validate_all_or_nothing_fields
(fields)¶ Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Raises
ConfigError – if some values are truth and some are not
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
class
fiftyone.utils.annotations.
AnnotationBackend
(*args, **kwargs)¶ Bases:
fiftyone.core.annotation.AnnotationMethod
Base class for annotation backends.
- Parameters
config – an
AnnotationBackendConfig
Attributes:
The list of media types that this backend supports.
The list of label types supported by the backend.
The list of scalar field types supported by the backend.
The list of attribute types supported by the backend.
Whether this backend supports annotating clips views.
Whether this backend supports uploading only keyframes when editing existing video track annotations.
Whether this backend supports annotating video labels at a sample-level.
Whether this backend requires a pre-defined label schema for its annotation runs.
Methods:
recommend_attr_tool
(name, value)Recommends an attribute tool for an attribute with the given name and value.
requires_attr_values
(attr_type)Determines whether the list of possible values are required for attributes of the given type.
Returns an API instance connected to the annotation backend.
use_api
(api)Registers an API instance to use for subsequent operations.
upload_annotations
(samples, anno_key[, …])Uploads the samples and relevant existing labels from the label schema to the annotation backend.
download_annotations
(results)Downloads the annotations from the annotation backend for the given results.
get_fields
(samples, anno_key)Gets the fields that were involved in the given run.
cleanup
(samples, key)Cleans up the results of the run with the given key from the collection.
delete_run
(samples, key[, cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[, cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_run_info
(samples, key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples, key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[, type, method])Returns the list of run keys on the given collection.
load_run_results
(samples, key[, cache, …])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples, key[, select_fields])Loads the
fiftyone.core.view.DatasetView
on which the specified run was performed.parse
(class_name[, module_name])Parses a Configurable subclass name string.
register_run
(samples, key[, overwrite, cleanup])Registers a run of this method under the given key on the given collection.
rename
(samples, key, new_key)Performs any necessary operations required to rename this run’s key.
The
BaseRunInfo
class associated with this class.save_run_info
(samples, run_info[, …])Saves the run information on the collection.
save_run_results
(samples, key, run_results)Saves the run results on the collection.
update_run_config
(samples, key, config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples, key, new_key)Replaces the key for the given run with a new key.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples, key[, overwrite])Validates that the collection can accept this run.
-
property
supported_media_types
¶ The list of media types that this backend supports.
For example, CVAT supports
["image", "video"]
.
-
property
supported_label_types
¶ The list of label types supported by the backend.
Backends may support any subset of the following label types:
"classification"
"classifications"
"detection"
"detections"
"instance"
"instances"
"polyline"
"polylines"
"polygon"
"polygons"
"keypoint"
"keypoints"
"segmentation"
"scalar"
-
property
supported_scalar_types
¶ The list of scalar field types supported by the backend.
For example, CVAT supports the following types:
-
property
supported_attr_types
¶ The list of attribute types supported by the backend.
This list defines the valid string values for the
type
field of an attributes dict of the label schema provided to the backend.For example, CVAT supports
["text", "select", "radio", "checkbox"]
.
-
property
supports_clips_views
¶ Whether this backend supports annotating clips views.
-
property
supports_keyframes
¶ Whether this backend supports uploading only keyframes when editing existing video track annotations.
-
property
supports_video_sample_fields
¶ Whether this backend supports annotating video labels at a sample-level.
-
property
requires_label_schema
¶ Whether this backend requires a pre-defined label schema for its annotation runs.
-
recommend_attr_tool
(name, value)¶ Recommends an attribute tool for an attribute with the given name and value.
For example, a backend may recommend a tool as follows for a boolean value:
{ "type": "radio", "values": [False, True], }
or a tool as follows for a generic value:
{"type": "text"}
- Parameters
name – the name of the attribute
value – the attribute value, which may be
None
- Returns
an attribute type dict
-
requires_attr_values
(attr_type)¶ Determines whether the list of possible values are required for attributes of the given type.
- Parameters
attr_type – the attribute type string
- Returns
True/False
-
connect_to_api
()¶ Returns an API instance connected to the annotation backend.
Existing API instances are reused, if available.
Some annotation backends may not expose this functionality.
- Returns
an
AnnotationAPI
, orNone
if the backend does not expose an API
-
use_api
(api)¶ Registers an API instance to use for subsequent operations.
- Parameters
api – an
AnnotationAPI
-
upload_annotations
(samples, anno_key, launch_editor=False)¶ Uploads the samples and relevant existing labels from the label schema to the annotation backend.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
anno_key – the annotation key
launch_editor (False) – whether to launch the annotation backend’s editor after uploading the samples
- Returns
-
download_annotations
(results)¶ Downloads the annotations from the annotation backend for the given results.
The returned labels should be represented as either scalar values or
fiftyone.core.labels.Label
instances.For image datasets, the return dictionary should have the following nested structure:
# Scalar fields results[label_type][sample_id] = scalar # Label fields results[label_type][sample_id][label_id] = label
For video datasets, the returned labels dictionary should have the following nested structure:
# Scalar fields results[label_type][sample_id][frame_id] = scalar # Label fields results[label_type][sample_id][frame_id][label_id] = label
The valid values for
label_type
are:“classifications”: single or multilabel classifications
“detections”: detections or instance segmentations
“polylines”: polygons or polylines
“segmentation”: semantic segmentations
“scalar”: scalar values
- Parameters
results – an
AnnotationResults
- Returns
the labels results dict
-
get_fields
(samples, anno_key)¶ Gets the fields that were involved in the given run.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns
a list of fields
-
cleanup
(samples, key)¶ Cleans up the results of the run with the given key from the collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
-
classmethod
delete_run
(samples, key, cleanup=True)¶ Deletes the results associated with the given run key from the collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
method
-
classmethod
delete_runs
(samples, cleanup=True)¶ Deletes all runs from the collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
methods
-
ensure_requirements
()¶ Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
-
ensure_usage_requirements
()¶ Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
-
classmethod
from_config
(config)¶ Instantiates a Configurable class from a <cls>Config instance.
-
classmethod
from_dict
(d)¶ Instantiates a Configurable class from a <cls>Config dict.
- Parameters
d – a dict to construct a <cls>Config
- Returns
an instance of cls
-
classmethod
from_json
(json_path)¶ Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters
json_path – path to a JSON file for type <cls>Config
- Returns
an instance of cls
-
classmethod
from_kwargs
(**kwargs)¶ Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns
an instance of cls
-
classmethod
get_run_info
(samples, key)¶ Gets the
BaseRunInfo
for the given key on the collection.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns
a
BaseRunInfo
-
classmethod
has_cached_run_results
(samples, key)¶ Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns
True/False
-
classmethod
list_runs
(samples, type=None, method=None, **kwargs)¶ Returns the list of run keys on the given collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
type (None) –
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) – a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs – optional config parameters to match
- Returns
a list of run keys
-
classmethod
load_run_results
(samples, key, cache=True, load_view=True, **kwargs)¶ Loads the
BaseRunResults
for the given key on the collection.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cache (True) – whether to cache the results on the collection
load_view (True) – whether to load the run view in the results (True) or the full dataset (False)
**kwargs – keyword arguments for the run’s
BaseRunConfig.load_credentials()
method
- Returns
a
BaseRunResults
, or None if the run did not save results
-
classmethod
load_run_view
(samples, key, select_fields=False)¶ Loads the
fiftyone.core.view.DatasetView
on which the specified run was performed.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
select_fields (False) – whether to exclude fields involved in other runs of the same type
- Returns
-
static
parse
(class_name, module_name=None)¶ Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns
the Configurable class config_cls: the Config class associated with cls
- Return type
cls
-
register_run
(samples, key, overwrite=True, cleanup=True)¶ Registers a run of this method under the given key on the given collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
-
rename
(samples, key, new_key)¶ Performs any necessary operations required to rename this run’s key.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
-
classmethod
run_info_cls
()¶ The
BaseRunInfo
class associated with this class.
-
classmethod
save_run_info
(samples, run_info, overwrite=True, cleanup=True)¶ Saves the run information on the collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
run_info – a
BaseRunInfo
overwrite (True) – whether to overwrite an existing run with the same key
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
-
classmethod
save_run_results
(samples, key, run_results, overwrite=True, cache=True)¶ Saves the run results on the collection.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
run_results – a
BaseRunResults
, or Noneoverwrite (True) – whether to overwrite an existing result with the same key
cache (True) – whether to cache the results on the collection
-
classmethod
update_run_config
(samples, key, config)¶ Updates the
BaseRunConfig
for the given run on the collection.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
config – a
BaseRunConfig
-
classmethod
update_run_key
(samples, key, new_key)¶ Replaces the key for the given run with a new key.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
-
classmethod
validate
(config)¶ Validates that the given config is an instance of <cls>Config.
- Raises
ConfigurableError – if config is not an instance of <cls>Config
-
validate_run
(samples, key, overwrite=True)¶ Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
- Raises
ValueError – if the run is invalid
-
class
fiftyone.utils.annotations.
AnnotationResults
(samples, config, anno_key, id_map, backend=None)¶ Bases:
fiftyone.core.annotation.AnnotationResults
Base class for storing the intermediate results of an annotation run that has been initiated and is waiting for its results to be merged back into the FiftyOne dataset.
The
id_map
dictionary must record the IDs of any existing labels that are being edited by the annotation run. Any new label fields do not need to have keys in this dictionary.For image datasets,
id_map
should have the following format:{ "<label-field>": { "<sample-id>": "label-id" or ["label-id", ...], ... }, ... }
For video datasets,
id_map
should have the following format:{ "<label-field>": { "<sample-id>": { "<frame-id>": label-id" or ["label-id", ...], ... }, ... }, ... }
When editing scalar fields, set the dictionary values corresponding to uploaded scalars to
True
(since scalars do not have IDs).If a particular sample or frame was included in the annotation run but no labels/scalars were uploaded for editing, the corresponding entry in
id_map
can be either missing or have a value ofNone
.Note
This class is serialized for storage in the database by calling
serialize()
.Any public attributes of this class are included in the representation generated by
serialize()
, so they must be JSON serializable.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
config – an
AnnotationBackendConfig
anno_key – the annotation key
id_map – a dictionary recording the existing label IDs, in the format described above
backend (None) – an
AnnotationBackend
Methods:
Returns an API instance connected to the annotation backend.
use_api
(api)Registers an API instance to use for subsequent operations.
Launches the annotation backend’s editor for these results.
cleanup
()Deletes all information for this run from the annotation backend.
Returns the list of class attributes that will be serialized by
serialize()
.base_results_cls
(type)Returns the results class for the given run type.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
from_dict
(d, samples, config, key)Builds a
BaseRunResults
from a JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
save
()Saves the results to the database.
Saves these results config to the database.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
Attributes:
The
BaseRun
for these results.The fully-qualified name of this
BaseRunResults
class.The
BaseRunConfig
for these results.The run key for these results.
The
fiftyone.core.collections.SampleCollection
associated with these results.-
connect_to_api
()¶ Returns an API instance connected to the annotation backend.
Existing API instances are reused, if available.
Some annotation backends may not expose this functionality.
- Returns
an
AnnotationAPI
, orNone
if the backend does not expose an API
-
use_api
(api)¶ Registers an API instance to use for subsequent operations.
- Parameters
api – an
AnnotationAPI
-
launch_editor
()¶ Launches the annotation backend’s editor for these results.
-
cleanup
()¶ Deletes all information for this run from the annotation backend.
-
attributes
()¶ Returns the list of class attributes that will be serialized by
serialize()
.- Returns
a list of attributes
-
property
backend
¶ The
BaseRun
for these results.
-
static
base_results_cls
(type)¶ Returns the results class for the given run type.
- Parameters
type – a
BaseRunConfig.type
- Returns
a
BaseRunResults
subclass
-
property
cls
¶ The fully-qualified name of this
BaseRunResults
class.
-
property
config
¶ The
BaseRunConfig
for these results.
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
from_dict
(d, samples, config, key)¶ Builds a
BaseRunResults
from a JSON dict representation of it.- Parameters
d – a JSON dict
samples – the
fiftyone.core.collections.SampleCollection
for the runconfig – the
BaseRunConfig
for the runkey – the run key
- Returns
a
BaseRunResults
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
property
key
¶ The run key for these results.
-
property
samples
¶ The
fiftyone.core.collections.SampleCollection
associated with these results.
-
save
()¶ Saves the results to the database.
-
save_config
()¶ Saves these results config to the database.
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
class
fiftyone.utils.annotations.
AnnotationAPI
¶ Bases:
object
Base class for APIs that connect to annotation backends.
Methods:
close
()Closes the API session.
-
close
()¶ Closes the API session.
-
-
class
fiftyone.utils.annotations.
DrawConfig
(d)¶ Bases:
eta.core.annotations.AnnotationConfig
Configuration class that controls the look-and-feel of the annotations rendered on images/videos.
- Parameters
show_frame_attr_names – (True) whether to render video/frame attribute names, if available
show_frame_attr_confidences – (False) whether to render video/frame attribute confidences, if available
frame_attrs_box_gap – (“1%”) the gap between the frame attributes box and the upper left corner of the image. This value is parsed by
eta.core.image.Width(frame_attrs_box_gap)
show_object_boxes – (True) whether to render object bounding boxes, if available. If this is
False
, labels, confidences, attributes, etc. are also hiddenshow_object_names – (True) whether to render object names, if available
show_object_labels – (True) whether to render object labels, if available
show_object_attrs – (True) whether to render object attributes, if available
show_object_confidences – (False) whether to render object label confidences, if available
per_object_name_colors – (True) whether to render boxes for objects with different names in different colors
per_object_label_colors – (True) whether to render boxes for objects with different labels in different colors
per_object_index_colors – (True) whether to render boxes for objects with different indexes in different colors
show_object_attr_names – (True) whether to render object attribute names, if available
show_object_attr_confidences – (False) whether to render object attribute confidences, if available
show_object_indices – (True) whether to render object indices, if available
show_object_masks – (True) whether to render object segmentation masks, if available
occluded_object_attr – (“occluded”) the name of the boolean attribute indicating whether an object is occluded
hide_occluded_objects – (False) whether to hide objects when they are occluded
show_event_boxes – (True) whether to render event bounding boxes, if available. If this is
False
, all attributes, confidences, etc. are also hiddenshow_event_labels – (True) whether to render event labels, if available
show_event_attrs – (True) whether to render event attributes, if available
show_event_names – (True) whether to render event names, if available
show_event_confidences – (False) whether to render event label confidences, if available
per_event_name_colors – (True) whether to render boxes for events with different names in different colors
per_event_label_colors – (True) whether to render boxes for events with different labels in different colors
per_event_index_colors – (True) whether to render boxes for events with different indexes in different colors
show_event_attr_names – (True) whether to render event attribute names, if available
show_event_attr_confidences – (False) whether to render event attribute confidences, if available
show_event_indices – (True) whether to render event indices, if available. By default, this is
True
show_event_masks – (True) whether to render event segmentation masks, if available
show_event_label_on_objects – (True) whether to render event labels as attributes on objects that belong to events
show_event_objects_in_same_color – (True) whether to render objects that belong to events in the same color as their parent event
occluded_event_attr – (“occluded”) the name of the boolean attribute indicating whether an event is occluded
hide_occluded_events – (False) whether to hide events when they are occluded
bbox_alpha – (0.75) the transparency of bounding boxes
bbox_label_text_pad_pixels – (2) the padding, in pixels, around the text in bounding box labels
bbox_linewidth –
the linewidth, in pixels, of bounding boxes
mask_border_thickness – (2) the thickness, in pixels, to use when drawing the borders of segmentation masks
mask_fill_alpha – (0.7) the transparency of segmentation masks
show_frame_mask_semantics – (True) whether to render semantic labels for frame mask regions, when mask indexes are available
attrs_box_render_method – (“panel”) the method used to render object attributes
attrs_box_bg_color – (“#000000”) the background color for attributes boxes
attrs_box_bg_alpha – (0.5) the transparency of attribute panel boxes
attrs_box_text_pad_pixels – (5) the padding, in pixels, around the text in attribute boxes
attrs_box_text_line_spacing_pixels – (1) the padding, in pixels, between each line of text in attribute boxes
show_keypoints_names – (False) whether to render keypoints names, if available
show_keypoints_labels – (False) whether to render keypoints labels, if available
show_keypoints_attrs – (False) whether to render keypoints attributes, if available
show_keypoints_attr_names – (False) whether to render keypoint attribute names, if available
show_keypoints_attr_confidences – (False) whether to render keypoint attribute confidences, if available
per_keypoints_name_colors – (True) whether to render keypoints with different names in different colors
per_keypoints_label_colors – (True) whether to render keypoints with different labels in different colors
keypoints_size –
the size to render keypoints
keypoints_alpha – (0.75) the transparency of keypoints
keypoints_skeleton –
(None) an optional keypoint skeleton dictionary of the following form:
{ "labels": [ "left hand" "left shoulder", "right shoulder", "right hand", "left eye", "right eye", "mouth" ], "edges": [[0, 1, 2, 3], [4, 5, 6]], }
draw_keypoints_skeletons – (True) whether to render keypoint skeletons, if available
keypoints_edge_linewidth (2) – the linewidth, in pixels, of keypoint skeleton edges
keypoints_edge_alpha – (0.75) the transparency of keypoint skeleton edges
show_polyline_names – (True) whether to render polyline names, if available
show_polyline_labels – (True) whether to render polyline labels, if available
show_polyline_attrs – (True) whether to render polyline attributes, if available
show_polyline_attr_names – (True) whether to render polyline attribute names, if available
show_polyline_attr_confidences – (False) whether to render polyline attribute confidences, if available
hide_non_filled_polyline_annos – (False) whether to override other settings and hide the annotation panels for non-filled polylines (those with
filled == False
)per_polyline_name_colors – (True) whether to render polylines with different names in different colors
per_polyline_label_colors – (True) whether to render polylines with different labels in different colors
polyline_alpha – (0.75) the transparency of polylines
polyline_linewidth – (3) the linewidth, in pixels, of non-filled polylines
fill_polylines – (True) whether to draw polylines as filled, when possible
show_all_names – (False) whether to render all names, if available. If set to
True
, this overrides all other name flagshide_all_names – (False) whether to hide all names, if available. If set to
True
, this overrides all other name flagsshow_name_only_titles – (False) whether to render titles that only contain the
name
of the entity (i.e., no label, confidence, index, etc)show_all_confidences – (False) whether to render all confidences, if available. If set to
True
, this overrides all other confidence flagshide_all_confidences – (False) whether to hide all confidences, if available. If set to
True
, this overrides all other confidence flagslabels_whitelist – (None) an optional whitelist of labels (of any kind). If provided, only entities whose
label
is in this list will be renderedlabels_blacklist – (None) an optional list of labels (of any kind) to not render
attr_names_blacklist – (None) an optional list of attribute names (of any kind) to not render
attr_values_blacklist – (None) an optional list of attribute values (of any kind) to not render
hide_false_boolean_attrs – (False) whether to hide attributes (of any kind) when they are
False
confidence_scaled_alpha – (False) whether to scale alpha values of objects and events based on their associated confidences
colormap_config – (None) the
eta.core.annotations.ColormapConfig
to use to select colors for objects/event boxestext_color – (“#FFFFFF”) the annotation text color
font_path – (
eta.core.constants.DEFAULT_FONT_PATH
) the path to thePIL.ImageFont
to usefont_size –
the font size to use
scale_by_media_height – (True) whether to scale font sizes and linewidths according to the height of the media (relative to a height of 720 pixels)
add_logo – (False) whether to add a logo to the frames
logo_config – (None) the
eta.core.logo.LogoConfig
describing the logo to use
Methods:
Returns a list of class attributes to be serialized.
builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a Config object from a JSON dictionary.
from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
set_media_size
([frame_size, shape, img])Sets the size of the media to the given value.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
Attributes:
-
attributes
()¶ Returns a list of class attributes to be serialized.
This method is called internally by serialize() to determine the class attributes to serialize.
Subclasses can override this method, but, by default, all attributes in vars(self) are returned, minus private attributes, i.e., those starting with “_”. The order of the attributes in this list is preserved when serializing objects, so a common pattern is for subclasses to override this method if they want their JSON files to be organized in a particular way.
- Returns
a list of class attributes to be serialized
-
classmethod
builder
()¶ Returns a ConfigBuilder instance for this class.
-
property
colormap
¶
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
default
()¶ Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
-
property
font
¶
-
classmethod
from_dict
(d)¶ Constructs a Config object from a JSON dictionary.
Config subclass constructors accept JSON dictionaries, so this method simply passes the dictionary to cls().
- Parameters
d – a dict of fields expected by cls
- Returns
an instance of cls
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_kwargs
(**kwargs)¶ Constructs a Config object from keyword arguments.
- Parameters
**kwargs – keyword arguments that define the fields expected by cls
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
property
linewidth
¶
-
classmethod
load_default
()¶ Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
-
property
logo
¶
-
property
media_height
¶
-
static
parse_array
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw array attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns
a list of raw (untouched) values
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_bool
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a boolean value.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns
True/False
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_categorical
(d, key, choices, default=<eta.core.config.NoDefault object>)¶ Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
-
static
parse_dict
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns
a dictionary
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_int
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses an integer attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns
an int
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_mutually_exclusive_fields
(fields)¶ Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Returns
the (field, value) that was set
- Raises
ConfigError – if zero or more than one truthy value was found
-
static
parse_number
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a number attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns
a number (e.g. int, float)
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns
an instance of cls
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_array
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns
a list of cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_dict
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns
a dictionary whose values are cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_path
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a path string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_raw
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw (arbitrary) JSON field.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field
- Raises
ConfigError – if no default value was provided and the key was not found in the dictionary
-
static
parse_string
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a string attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
property
scale_factor
¶
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
set_media_size
(frame_size=None, shape=None, img=None)¶ Sets the size of the media to the given value. This allows for optimizing font sizes, linewidths, and logo resolutions to suit the dimensions of the media being annotated.
Exactly one keyword argument must be provided.
- Parameters
frame_size – the (width, height) of the image/video frame
shape – the (height, width, …) of the image/video frame, e.g. from img.shape
img – an example image/video frame
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
static
validate_all_or_nothing_fields
(fields)¶ Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Raises
ConfigError – if some values are truth and some are not
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
fiftyone.utils.annotations.
draw_labeled_images
(samples, output_dir, rel_dir=None, label_fields=None, config=None, progress=None, **kwargs)¶ Renders annotated versions of the images in the collection with the specified label data overlaid to the given directory.
The filenames of the sample images are maintained, unless a name conflict would occur in
output_dir
, in which case an index of the form"-%d" % count
is appended to the base filename.The images are written in format
fo.config.default_image_ext
.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
output_dir – the directory to write the annotated images
rel_dir (None) – an optional relative directory to strip from each input filepath to generate a unique identifier that is joined with
output_dir
to generate an output path for each annotated image. This argument allows for populating nested subdirectories inoutput_dir
that match the shape of the input paths. The path is converted to an absolute path (if necessary) viafiftyone.core.storage.normalize_path()
label_fields (None) – a label field or list of label fields to render. If omitted, all compatible fields are rendered
config (None) – an optional
DrawConfig
configuring how to draw the labelsprogress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – optional keyword arguments specifying parameters of the default
DrawConfig
to override
- Returns
the list of paths to the labeled images
-
fiftyone.utils.annotations.
draw_labeled_image
(sample, outpath, label_fields=None, config=None, **kwargs)¶ Renders an annotated version of the sample’s image with the specified label data overlaid to disk.
- Parameters
sample – a
fiftyone.core.sample.Sample
outpath – the path to write the annotated image
label_fields (None) – a label field or list of label fields to render. If omitted, all compatible fields are rendered
config (None) – an optional
DrawConfig
configuring how to draw the labels**kwargs – optional keyword arguments specifying parameters of the default
DrawConfig
to override
-
fiftyone.utils.annotations.
draw_labeled_videos
(samples, output_dir, rel_dir=None, label_fields=None, config=None, progress=None, **kwargs)¶ Renders annotated versions of the videos in the collection with the specified label data overlaid to the given directory.
The filenames of the videos are maintained, unless a name conflict would occur in
output_dir
, in which case an index of the form"-%d" % count
is appended to the base filename.The videos are written in format
fo.config.default_video_ext
.- Parameters
samples – a
fiftyone.core.collections.SampleCollection
output_dir – the directory to write the annotated videos
rel_dir (None) – an optional relative directory to strip from each input filepath to generate a unique identifier that is joined with
output_dir
to generate an output path for each annotated video. This argument allows for populating nested subdirectories inoutput_dir
that match the shape of the input paths. The path is converted to an absolute path (if necessary) viafiftyone.core.storage.normalize_path()
label_fields (None) – a label field or list of label fields to render. If omitted, all compatible fields are rendered
config (None) – an optional
DrawConfig
configuring how to draw the labelsprogress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – optional keyword arguments specifying parameters of the default
DrawConfig
to override
- Returns
the list of paths to the labeled videos
-
fiftyone.utils.annotations.
draw_labeled_video
(sample, outpath, support=None, label_fields=None, config=None, **kwargs)¶ Renders an annotated version of the sample’s video with the specified label data overlaid to disk.
- Parameters
sample – a
fiftyone.core.sample.Sample
outpath – the path to write the annotated image
support (None) – an optional
[first, last]
range of frames to renderlabel_fields (None) – a label field or list of label fields to render. If omitted, all compatible fields are rendered
config (None) – an optional
DrawConfig
configuring how to draw the labels**kwargs – optional keyword arguments specifying parameters of the default
DrawConfig
to override