fiftyone.utils.eta¶
Utilities for interfacing with the ETA library.
Classes:
Meta-config class that encapsulates the configuration of an eta.core.learning.Model that is to be run via the |
|
|
Wrapper for running an |
Functions:
|
Loads the |
|
Converts the image label(s) to |
|
Loads the |
|
Converts the given labels to |
|
Returns an |
|
Creates a |
|
Creates a |
|
Returns an |
|
Creates a |
|
Creates a |
|
Returns an |
|
Creates a |
|
Creates a |
|
Returns an |
|
Creates a |
|
Creates a |
|
Returns an |
|
Creates a |
|
Creates a |
-
class
fiftyone.utils.eta.
ETAModelConfig
(d)¶ Bases:
fiftyone.core.models.ModelConfig
Meta-config class that encapsulates the configuration of an eta.core.learning.Model that is to be run via the
ETAModel
wrapper.Example:
import fiftyone.core.models as fom model = fom.load_model({ "type": "fiftyone.utils.eta.ETAModel", "config": { "type": "eta.detectors.YOLODetector", "config": { "model_name": "yolo-v2-coco" } } })
- Parameters
type – the fully-qualified class name of the
fiftyone.core.models.Model
subclass, which must beETAModel
or a subclass of itconfig – a dict containing the
eta.core.learning.ModelConfig
for the ETA model
Attributes:
The confidence threshold of the underlying
eta.core.model.Model
.Methods:
Returns a list of class attributes to be serialized.
build
()Factory method that builds the Model instance from the config specified by this class.
builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a Config object from a JSON dictionary.
from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
-
property
confidence_thresh
¶ The confidence threshold of the underlying
eta.core.model.Model
.Note that this may not be defined for some models.
-
attributes
()¶ Returns a list of class attributes to be serialized.
This method is called internally by serialize() to determine the class attributes to serialize.
Subclasses can override this method, but, by default, all attributes in vars(self) are returned, minus private attributes, i.e., those starting with “_”. The order of the attributes in this list is preserved when serializing objects, so a common pattern is for subclasses to override this method if they want their JSON files to be organized in a particular way.
- Returns
a list of class attributes to be serialized
-
build
()¶ Factory method that builds the Model instance from the config specified by this class.
- Returns
a Model instance
-
classmethod
builder
()¶ Returns a ConfigBuilder instance for this class.
-
copy
()¶ Returns a deep copy of the object.
- Returns
a Serializable instance
-
custom_attributes
(dynamic=False, private=False)¶ Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns
a list of class attributes
-
classmethod
default
()¶ Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
-
classmethod
from_dict
(d)¶ Constructs a Config object from a JSON dictionary.
Config subclass constructors accept JSON dictionaries, so this method simply passes the dictionary to cls().
- Parameters
d – a dict of fields expected by cls
- Returns
an instance of cls
-
classmethod
from_json
(path, *args, **kwargs)¶ Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
from_kwargs
(**kwargs)¶ Constructs a Config object from keyword arguments.
- Parameters
**kwargs – keyword arguments that define the fields expected by cls
- Returns
an instance of cls
-
classmethod
from_str
(s, *args, **kwargs)¶ Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns
an instance of the Serializable class
-
classmethod
get_class_name
()¶ Returns the fully-qualified class name string of this object.
-
classmethod
load_default
()¶ Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
-
static
parse_array
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw array attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns
a list of raw (untouched) values
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_bool
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a boolean value.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns
True/False
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_categorical
(d, key, choices, default=<eta.core.config.NoDefault object>)¶ Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
-
static
parse_dict
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns
a dictionary
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_int
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses an integer attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns
an int
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_mutually_exclusive_fields
(fields)¶ Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Returns
the (field, value) that was set
- Raises
ConfigError – if zero or more than one truthy value was found
-
static
parse_number
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a number attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns
a number (e.g. int, float)
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns
an instance of cls
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_array
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns
a list of cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_object_dict
(d, key, cls, default=<eta.core.config.NoDefault object>)¶ Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns
a dictionary whose values are cls instances
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_path
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a path string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
static
parse_raw
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a raw (arbitrary) JSON field.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns
the raw (untouched) value of the given field
- Raises
ConfigError – if no default value was provided and the key was not found in the dictionary
-
static
parse_string
(d, key, default=<eta.core.config.NoDefault object>)¶ Parses a string attribute.
- Parameters
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns
a string
- Raises
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
-
serialize
(reflective=False)¶ Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns
a JSON dictionary representation of the object
-
to_str
(pretty_print=True, **kwargs)¶ Returns a string representation of this object.
- Parameters
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns
a string representation of the object
-
static
validate_all_or_nothing_fields
(fields)¶ Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters
fields – a dictionary of pre-parsed fields
- Raises
ConfigError – if some values are truth and some are not
-
write_json
(path, pretty_print=False, **kwargs)¶ Serializes the object and writes it to disk.
- Parameters
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
-
class
fiftyone.utils.eta.
ETAModel
(config, _model=None)¶ Bases:
fiftyone.core.models.Model
,fiftyone.core.models.EmbeddingsMixin
,fiftyone.core.models.LogitsMixin
Wrapper for running an
eta.core.learning.Model
model.- Parameters
config – an
ETAModelConfig
Attributes:
The media type processed by the model.
True/False whether
transforms()
may return tensors of different sizes.The preprocessing function that will/must be applied to each input before prediction, or
None
if no preprocessing is performed.Whether to apply
transforms()
during inference (True) or to assume that they have already been applied (False).Whether this instance can generate logits for its predictions.
Whether this instance can generate embeddings.
Whether this instance can generate prompt embeddings.
Whether the model should store logits in its predictions.
Methods:
Returns the embeddings generated by the last forward pass of the model.
embed
(arg)Generates an embedding for the given data.
embed_all
(args)Generates embeddings for the given iterable of data.
predict
(arg)Performs prediction on the given data.
predict_all
(args)Performs prediction on the given iterable of data.
from_eta_model
(model)Builds an
ETAModel
for running the providedeta.core.learning.Model
instance.from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
validate
(config)Validates that the given config is an instance of <cls>Config.
-
property
media_type
¶ The media type processed by the model.
Supported values are “image” and “video”.
-
property
ragged_batches
¶ True/False whether
transforms()
may return tensors of different sizes. If True, then passing ragged lists of data topredict_all()
is not allowed.
-
property
transforms
¶ The preprocessing function that will/must be applied to each input before prediction, or
None
if no preprocessing is performed.
-
property
preprocess
¶ Whether to apply
transforms()
during inference (True) or to assume that they have already been applied (False).
-
property
has_logits
¶ Whether this instance can generate logits for its predictions.
This method returns
False
by default. Methods that can generate logits will override this via implementing theLogitsMixin
interface.
-
property
has_embeddings
¶ Whether this instance can generate embeddings.
This method returns
False
by default. Methods that can generate embeddings will override this via implementing theEmbeddingsMixin
interface.
-
get_embeddings
()¶ Returns the embeddings generated by the last forward pass of the model.
By convention, this method should always return an array whose first axis represents batch size (which will always be 1 when
predict()
was last used).- Returns
a numpy array containing the embedding(s)
-
embed
(arg)¶ Generates an embedding for the given data.
Subclasses can override this method to increase efficiency, but, by default, this method simply calls
predict()
and then returnsget_embeddings()
.- Parameters
arg – the data. See
predict()
for details- Returns
a numpy array containing the embedding
-
embed_all
(args)¶ Generates embeddings for the given iterable of data.
Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
embed()
to each.- Parameters
args – an iterable of data. See
predict_all()
for details- Returns
a numpy array containing the embeddings stacked along axis 0
-
predict
(arg)¶ Performs prediction on the given data.
Image models should support, at minimum, processing
arg
values that are uint8 numpy arrays (HWC).Video models should support, at minimum, processing
arg
values that areeta.core.video.VideoReader
instances.- Parameters
arg – the data
- Returns
a
fiftyone.core.labels.Label
instance or dict offiftyone.core.labels.Label
instances containing the predictions
-
predict_all
(args)¶ Performs prediction on the given iterable of data.
Image models should support, at minimum, processing
args
values that are either lists of uint8 numpy arrays (HWC) or numpy array tensors (NHWC).Video models should support, at minimum, processing
args
values that are lists ofeta.core.video.VideoReader
instances.Subclasses can override this method to increase efficiency, but, by default, this method simply iterates over the data and applies
predict()
to each.- Parameters
args – an iterable of data
- Returns
a list of
fiftyone.core.labels.Label
instances or a list of dicts offiftyone.core.labels.Label
instances containing the predictions
-
classmethod
from_eta_model
(model)¶ Builds an
ETAModel
for running the providedeta.core.learning.Model
instance.- Parameters
model – an
eta.core.learning.Model
instance- Returns
an
ETAModel
-
property
can_embed_prompts
¶ Whether this instance can generate prompt embeddings.
This method returns
False
by default. Methods that can generate prompt embeddings will override this via implementing thePromptMixin
interface.
-
classmethod
from_config
(config)¶ Instantiates a Configurable class from a <cls>Config instance.
-
classmethod
from_dict
(d)¶ Instantiates a Configurable class from a <cls>Config dict.
- Parameters
d – a dict to construct a <cls>Config
- Returns
an instance of cls
-
classmethod
from_json
(json_path)¶ Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters
json_path – path to a JSON file for type <cls>Config
- Returns
an instance of cls
-
classmethod
from_kwargs
(**kwargs)¶ Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns
an instance of cls
-
static
parse
(class_name, module_name=None)¶ Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns
the Configurable class config_cls: the Config class associated with cls
- Return type
cls
-
property
store_logits
¶ Whether the model should store logits in its predictions.
-
classmethod
validate
(config)¶ Validates that the given config is an instance of <cls>Config.
- Raises
ConfigurableError – if config is not an instance of <cls>Config
-
fiftyone.utils.eta.
from_image_labels
(image_labels_or_path, prefix=None, labels_dict=None, multilabel=False, skip_non_categorical=False)¶ Loads the
eta.core.image.ImageLabels
oreta.core.frames.FrameLabels
into a dictionary of labels.Provide
labels_dict
if you want to customize which components of the labels are expanded. Otherwise, all labels are expanded as explained below.If
multilabel
is False, frame attributes will be stored in separateClassification
fields with namesprefix + attr.name
.If
multilabel
if True, all frame attributes will be stored in aClassifications
field calledprefix + "attributes"
.Objects are expanded into fields with names
prefix + obj.name
, orprefix + "detections"
for objects that do not have theirname
field populated.Polylines are expanded into fields with names
prefix + polyline.name
, orprefix + "polylines"
for polylines that do not have theirname
field populated.Keypoints are expanded into fields with names
prefix + keypoints.name
, orprefix + "keypoints"
for keypoints that do not have theirname
field populated.Segmentation masks are expanded into a field with name
prefix + "mask"
.- Parameters
image_labels_or_path – can be a
eta.core.image.ImageLabels
instance, aeta.core.frames.FrameLabels
instance, a serialized dict representation of either, or the path to either on diskprefix (None) – a string prefix to prepend to each field name in the output dict
labels_dict (None) – a dictionary mapping names of labels to keys to assign them in the output dictionary
multilabel (False) – whether to store attributes in a single
Classifications
instanceskip_non_categorical (False) – whether to skip non-categorical attributes (True) or cast them to strings (False)
- Returns
a dict mapping names to
fiftyone.core.labels.Label
instances
-
fiftyone.utils.eta.
to_image_labels
(labels, warn_unsupported=True)¶ Converts the image label(s) to
eta.core.image.ImageLabels
format.- Parameters
labels – a
fiftyone.core.labels.Label
instance or a dict mapping names tofiftyone.core.labels.Label
instanceswarn_unsupported (True) – whether to issue warnings if unsupported label values are encountered
- Returns
an
eta.core.image.ImageLabels
instance
-
fiftyone.utils.eta.
from_video_labels
(video_labels_or_path, prefix=None, labels_dict=None, frame_labels_dict=None, multilabel=False, skip_non_categorical=False)¶ Loads the
eta.core.video.VideoLabels
into a frame labels dictionary.- Parameters
video_labels_or_path – can be a
eta.core.video.VideoLabels
instance, a serialized dict representation of one, or the path to one on diskprefix (None) – a string prefix to prepend to each label name in the expanded sample/frame label dictionaries
labels_dict (None) – a dictionary mapping names of attributes/objects in the sample labels to field names into which to expand them. By default, all sample labels are loaded
frame_labels_dict (None) – a dictionary mapping names of attributes/objects in the frame labels to field names into which to expand them. By default, all frame labels are loaded
multilabel (False) – whether to store attributes in a single
fiftyone.core.labels.Classifications
instanceskip_non_categorical (False) – whether to skip non-categorical attributes (True) or cast them to strings (False)
- Returns
a tuple of
label: a dict mapping sample field names to
fiftyone.core.labels.Label
instancesframes: a dict mapping frame numbers to dicts that map label fields to
fiftyone.core.labels.Label
instances
-
fiftyone.utils.eta.
to_video_labels
(label=None, frames=None, support=None, warn_unsupported=True)¶ Converts the given labels to
eta.core.video.VideoLabels
format.- Parameters
label (None) – video-level labels provided as a
fiftyone.core.labels.Label
instance or dict mapping field names tofiftyone.core.labels.Label
instancesframes (None) – frame-level labels provided as a dict mapping frame numbers to dicts mapping field names to
fiftyone.core.labels.Label
instancessupport (None) – an optional
[first, last]
support to store on the returned labelswarn_unsupported (True) – whether to issue warnings if unsupported label values are encountered
- Returns
a
eta.core.video.VideoLabels
-
fiftyone.utils.eta.
to_attribute
(classification, name=None)¶ Returns an
eta.core.data.Attribute
representation of thefiftyone.core.labels.Classification
.- Parameters
classification – a
fiftyone.core.labels.Classification
name (None) – the name of the label field
- Returns
a
eta.core.data.CategoricalAttribute
-
fiftyone.utils.eta.
from_attribute
(attr)¶ Creates a
fiftyone.core.labels.Classification
from aneta.core.data.Attribute
.The attribute value is cast to a string, if necessary.
- Parameters
attr – an
eta.core.data.Attribute
- Returns
-
fiftyone.utils.eta.
from_attributes
(attrs, skip_non_categorical=False)¶ Creates a
fiftyone.core.labels.Classifications
from a list of attributes.- Parameters
attrs – an iterable of
eta.core.data.Attribute
instancesskip_non_categorical (False) – whether to skip non-categorical attributes (True) or cast all attribute values to strings (False)
- Returns
-
fiftyone.utils.eta.
to_detected_object
(detection, name=None, extra_attrs=True)¶ Returns an
eta.core.objects.DetectedObject
representation of the givenfiftyone.core.labels.Detection
.- Parameters
detection – a
fiftyone.core.labels.Detection
name (None) – the name of the label field
extra_attrs (True) – whether to include custom attributes in the conversion
- Returns
an
eta.core.objects.DetectedObject
-
fiftyone.utils.eta.
from_detected_object
(dobj)¶ Creates a
fiftyone.core.labels.Detection
from aneta.core.objects.DetectedObject
.- Parameters
dobj – a
eta.core.objects.DetectedObject
- Returns
-
fiftyone.utils.eta.
from_detected_objects
(objects)¶ Creates a
fiftyone.core.labels.Detections
from aneta.core.objects.DetectedObjectContainer
.- Parameters
objects – a
eta.core.objects.DetectedObjectContainer
- Returns
-
fiftyone.utils.eta.
to_polyline
(polyline, name=None, extra_attrs=True)¶ Returns an
eta.core.polylines.Polyline
representation of the givenfiftyone.core.labels.Polyline
.- Parameters
polyline – a
fiftyone.core.labels.Polyline
name (None) – the name of the label field
extra_attrs (True) – whether to include custom attributes in the conversion
- Returns
an
eta.core.polylines.Polyline
-
fiftyone.utils.eta.
from_polyline
(polyline)¶ Creates a
fiftyone.core.labels.Polyline
from aneta.core.polylines.Polyline
.- Parameters
polyline – an
eta.core.polylines.Polyline
- Returns
-
fiftyone.utils.eta.
from_polylines
(polylines)¶ Creates a
fiftyone.core.labels.Polylines
from aneta.core.polylines.PolylineContainer
.- Parameters
polylines – an
eta.core.polylines.PolylineContainer
- Returns
-
fiftyone.utils.eta.
to_keypoints
(keypoint, name=None, extra_attrs=True)¶ Returns an
eta.core.keypoints.Keypoints
representation of the givenfiftyone.core.labels.Keypoint
.- Parameters
keypoint – a
fiftyone.core.labels.Keypoint
name (None) – the name of the label field
extra_attrs (True) – whether to include custom attributes in the conversion
- Returns
an
eta.core.keypoints.Keypoints
-
fiftyone.utils.eta.
from_keypoint
(keypoints)¶ Creates a
fiftyone.core.labels.Keypoint
from aneta.core.keypoints.Keypoints
.- Parameters
keypoints – an
eta.core.keypoints.Keypoints
- Returns
-
fiftyone.utils.eta.
from_keypoints
(keypoints)¶ Creates a
fiftyone.core.labels.Keypoints
from aneta.core.keypoints.KeypointsContainer
.- Parameters
keypoints – an
eta.core.keypoints.KeypointsContainer
- Returns
-
fiftyone.utils.eta.
to_video_event
(temporal_detection, name=None, extra_attrs=True)¶ Returns an
eta.core.events.VideoEvent
representation of the givenfiftyone.core.labels.TemporalDetection
.- Parameters
temporal_detection – a
fiftyone.core.labels.TemporalDetection
name (None) – the name of the label field
extra_attrs (True) – whether to include custom attributes in the conversion
- Returns
an
eta.core.events.VideoEvent
-
fiftyone.utils.eta.
from_video_event
(video_event)¶ Creates a
fiftyone.core.labels.TemporalDetection
from aneta.core.events.VideoEvent
.- Parameters
video_event – an
eta.core.events.VideoEvent
- Returns
-
fiftyone.utils.eta.
from_video_events
(video_events)¶ Creates a
fiftyone.core.labels.TemporalDetections
from aneta.core.events.VideoEventContainer
.- Parameters
video_events – an
eta.core.events.VideoEventContainer
- Returns