fiftyone.utils.labelbox#
Utilities for working with annotations in Labelbox format.
Classes:
Enum for Labelbox export formats and API versions. |
|
|
Class for configuring |
|
Class for interacting with the Labelbox annotation backend. |
|
A class to facilitate connection to and management of projects in Labelbox. |
|
Class that stores all relevant information needed to monitor the progress of an annotation run sent to Labelbox and download the results. |
Functions:
|
Imports the labels from the Labelbox project into the FiftyOne dataset. |
|
Exports labels from the FiftyOne samples to Labelbox format. |
|
Downloads the labels for the given Labelbox project. |
|
Uploads the raw media for the FiftyOne samples to Labelbox. |
|
Uploads labels to a Labelbox project. |
|
Converts a Labelbox NDJSON export generated by |
- class fiftyone.utils.labelbox.LabelboxExportVersion#
Bases:
object
Enum for Labelbox export formats and API versions.
Attributes:
- V1 = 'v1'#
- V2 = 'v2'#
- class fiftyone.utils.labelbox.LabelboxBackendConfig(name, label_schema, media_field='filepath', url=None, api_key=None, project_name=None, members=None, classes_as_attrs=True, export_version='v2', **kwargs)#
Bases:
AnnotationBackendConfig
Class for configuring
LabelboxBackend
instances.- Parameters:
name β the name of the backend
label_schema β a dictionary containing the description of label fields, classes and attribute to annotate
media_field ("filepath") β string field name containing the paths to media files on disk to upload
url (None) β the url of the Labelbox server
api_key (None) β the Labelbox API key
project_name (None) β a name for the Labelbox project that will be created. The default is
"FiftyOne_<dataset_name>"
members (None) β an optional list of
(email, role)
tuples specifying the email addresses and roles of users to add to the project. If a user is not a member of the projectβs organization, an email invitation will be sent to them. The supported roles are["LABELER", "REVIEWER", "TEAM_MANAGER", "ADMIN"]
classes_as_attrs (True) β whether to show every object class at the top level of the editor (False) or whether to show the label field at the top level and annotate the class as a required attribute of each object (True)
export_version ("v2") β the Labelbox export format and API version to use. Supported values are
("v1", "v2")
Attributes:
The fully-qualified name of this
BaseRunConfig
class.The name of the annotation backend.
The
BaseRun
class associated with this config.The type of run.
Methods:
load_credentials
([url,Β api_key])Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic,Β private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path,Β *args,Β **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s,Β *args,Β **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
Loads the default config instance from file.
parse_array
(d,Β key[,Β default])Parses a raw array attribute.
parse_bool
(d,Β key[,Β default])Parses a boolean value.
parse_categorical
(d,Β key,Β choices[,Β default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d,Β key[,Β default])Parses a dictionary attribute.
parse_int
(d,Β key[,Β default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d,Β key[,Β default])Parses a number attribute.
parse_object
(d,Β key,Β cls[,Β default])Parses an object attribute.
parse_object_array
(d,Β key,Β cls[,Β default])Parses an array of objects.
parse_object_dict
(d,Β key,Β cls[,Β default])Parses a dictionary whose values are objects.
parse_path
(d,Β key[,Β default])Parses a path attribute.
parse_raw
(d,Β key[,Β default])Parses a raw (arbitrary) JSON field.
parse_string
(d,Β key[,Β default])Parses a string attribute.
serialize
(*args,Β **kwargs)Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[,Β pretty_print])Serializes the object and writes it to disk.
- property api_key#
- load_credentials(url=None, api_key=None)#
Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters:
**kwargs β subclass-specific credentials
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- static base_config_cls(type)#
Returns the config class for the given run type.
- Parameters:
type β a
BaseRunConfig.type
- Returns:
a
BaseRunConfig
subclass
- build()#
Builds the
BaseRun
instance associated with this config.- Returns:
a
BaseRun
instance
- classmethod builder()#
Returns a ConfigBuilder instance for this class.
- property cls#
The fully-qualified name of this
BaseRunConfig
class.
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with β_β).
- Parameters:
dynamic β whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private β whether to include private properties, i.e., those starting with β_β. By default, this is False
- Returns:
a list of class attributes
- classmethod default()#
Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
- classmethod from_dict(d)#
Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters:
d β a JSON dict
- Returns:
a
BaseRunConfig
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path β the path to the JSON file on disk
*args β optional positional arguments for self.from_dict()
**kwargs β optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_kwargs(**kwargs)#
Constructs a Config object from keyword arguments.
- Parameters:
**kwargs β keyword arguments that define the fields expected by cls
- Returns:
an instance of cls
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s β a JSON string representation of a Serializable object
*args β optional positional arguments for self.from_dict()
**kwargs β optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- classmethod load_default()#
Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
- property method#
The name of the annotation backend.
- static parse_array(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw array attribute.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default list to return if key is not present
- Returns:
a list of raw (untouched) values
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#
Parses a boolean value.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default bool to return if key is not present
- Returns:
True/False
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#
Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters:
d β a JSON dictionary
key β the key to parse
choices β either an iterable of possible values or an enum-like class whose attributes define the possible values
default β a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises:
ConfigError β if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
- static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#
Parses a dictionary attribute.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default dict to return if key is not present
- Returns:
a dictionary
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_int(d, key, default=<eta.core.config.NoDefault object>)#
Parses an integer attribute.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default integer value to return if key is not present
- Returns:
an int
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_mutually_exclusive_fields(fields)#
Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters:
fields β a dictionary of pre-parsed fields
- Returns:
the (field, value) that was set
- Raises:
ConfigError β if zero or more than one truthy value was found
- static parse_number(d, key, default=<eta.core.config.NoDefault object>)#
Parses a number attribute.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default numeric value to return if key is not present
- Returns:
a number (e.g. int, float)
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters:
d β a JSON dictionary
key β the key to parse
cls β the class of d[key]
default β a default cls instance to return if key is not present
- Returns:
an instance of cls
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d β a JSON dictionary
key β the key to parse
cls β the class of the elements of list d[key]
default β the default list to return if key is not present
- Returns:
a list of cls instances
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d β a JSON dictionary
key β the key to parse
cls β the class of the values of dictionary d[key]
default β the default dict of cls instances to return if key is not present
- Returns:
a dictionary whose values are cls instances
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_path(d, key, default=<eta.core.config.NoDefault object>)#
Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default string to return if key is not present
- Returns:
a path string
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw (arbitrary) JSON field.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field
- Raises:
ConfigError β if no default value was provided and the key was not found in the dictionary
- static parse_string(d, key, default=<eta.core.config.NoDefault object>)#
Parses a string attribute.
- Parameters:
d β a JSON dictionary
key β the key to parse
default β a default string to return if key is not present
- Returns:
a string
- Raises:
ConfigError β if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- property run_cls#
The
BaseRun
class associated with this config.
- serialize(*args, **kwargs)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective β whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print β whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs β optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- property type#
The type of run.
- static validate_all_or_nothing_fields(fields)#
Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters:
fields β a dictionary of pre-parsed fields
- Raises:
ConfigError β if some values are truth and some are not
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path β the output path
pretty_print β whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs β optional keyword arguments for self.serialize()
- class fiftyone.utils.labelbox.LabelboxBackend(*args, **kwargs)#
Bases:
AnnotationBackend
Class for interacting with the Labelbox annotation backend.
Attributes:
The list of media types that this backend supports.
The list of label types supported by the backend.
The list of scalar field types supported by the backend.
The list of attribute types supported by the backend.
Whether this backend supports uploading only keyframes when editing existing video track annotations.
Whether this backend supports annotating video labels at a sample-level.
Whether this backend requires a pre-defined label schema for its annotation runs.
Whether this backend supports annotating clips views.
Methods:
recommend_attr_tool
(name,Β value)Recommends an attribute tool for an attribute with the given name and value.
requires_attr_values
(attr_type)Determines whether the list of possible values are required for attributes of the given type.
upload_annotations
(samples,Β anno_key[,Β ...])Uploads the samples and relevant existing labels from the label schema to the annotation backend.
download_annotations
(results)Downloads the annotations from the annotation backend for the given results.
cleanup
(samples,Β key)Cleans up the results of the run with the given key from the collection.
Returns an API instance connected to the annotation backend.
delete_run
(samples,Β key[,Β cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[,Β cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_fields
(samples,Β anno_key)Gets the fields that were involved in the given run.
get_run_info
(samples,Β key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples,Β key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[,Β type,Β method])Returns the list of run keys on the given collection.
load_run_results
(samples,Β key[,Β cache,Β ...])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples,Β key[,Β select_fields])Loads the view on which the specified run was performed.
parse
(class_name[,Β module_name])Parses a Configurable subclass name string.
register_run
(samples,Β key[,Β overwrite,Β cleanup])Registers a run of this method under the given key on the given collection.
rename
(samples,Β key,Β new_key)Performs any necessary operations required to rename this run's key.
The
BaseRunInfo
class associated with this class.save_run_info
(samples,Β run_info[,Β ...])Saves the run information on the collection.
save_run_results
(samples,Β key,Β run_results)Saves the run results on the collection.
update_run_config
(samples,Β key,Β config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples,Β key,Β new_key)Replaces the key for the given run with a new key.
use_api
(api)Registers an API instance to use for subsequent operations.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples,Β key[,Β overwrite])Validates that the collection can accept this run.
- property supported_media_types#
The list of media types that this backend supports.
For example, CVAT supports
["image", "video"]
.
- property supported_label_types#
The list of label types supported by the backend.
Backends may support any subset of the following label types:
"classification"
"classifications"
"detection"
"detections"
"instance"
"instances"
"polyline"
"polylines"
"polygon"
"polygons"
"keypoint"
"keypoints"
"segmentation"
"scalar"
- property supported_scalar_types#
The list of scalar field types supported by the backend.
For example, CVAT supports the following types:
- property supported_attr_types#
The list of attribute types supported by the backend.
This list defines the valid string values for the
type
field of an attributes dict of the label schema provided to the backend.For example, CVAT supports
["text", "select", "radio", "checkbox"]
.
- property supports_keyframes#
Whether this backend supports uploading only keyframes when editing existing video track annotations.
- property supports_video_sample_fields#
Whether this backend supports annotating video labels at a sample-level.
- property requires_label_schema#
Whether this backend requires a pre-defined label schema for its annotation runs.
- recommend_attr_tool(name, value)#
Recommends an attribute tool for an attribute with the given name and value.
For example, a backend may recommend a tool as follows for a boolean value:
{ "type": "radio", "values": [False, True], }
or a tool as follows for a generic value:
{"type": "text"}
- Parameters:
name β the name of the attribute
value β the attribute value, which may be
None
- Returns:
an attribute type dict
- requires_attr_values(attr_type)#
Determines whether the list of possible values are required for attributes of the given type.
- Parameters:
attr_type β the attribute type string
- Returns:
True/False
- upload_annotations(samples, anno_key, launch_editor=False)#
Uploads the samples and relevant existing labels from the label schema to the annotation backend.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
anno_key β the annotation key
launch_editor (False) β whether to launch the annotation backendβs editor after uploading the samples
- Returns:
an
AnnotationResults
- download_annotations(results)#
Downloads the annotations from the annotation backend for the given results.
The returned labels should be represented as either scalar values or
fiftyone.core.labels.Label
instances.For image datasets, the return dictionary should have the following nested structure:
# Scalar fields results[label_type][sample_id] = scalar # Label fields results[label_type][sample_id][label_id] = label
For video datasets, the returned labels dictionary should have the following nested structure:
# Scalar fields results[label_type][sample_id][frame_id] = scalar # Label fields results[label_type][sample_id][frame_id][label_id] = label
The valid values for
label_type
are:βclassificationsβ: single or multilabel classifications
βdetectionsβ: detections or instance segmentations
βpolylinesβ: polygons or polylines
βsegmentationβ: semantic segmentations
βscalarβ: scalar values
- Parameters:
results β an
AnnotationResults
- Returns:
the labels results dict
- cleanup(samples, key)#
Cleans up the results of the run with the given key from the collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
- connect_to_api()#
Returns an API instance connected to the annotation backend.
Existing API instances are reused, if available.
Some annotation backends may not expose this functionality.
- Returns:
an
AnnotationAPI
, orNone
if the backend does not expose an API
- classmethod delete_run(samples, key, cleanup=True)#
Deletes the results associated with the given run key from the collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
cleanup (True) β whether to execute the runβs
BaseRun.cleanup()
method
- classmethod delete_runs(samples, cleanup=True)#
Deletes all runs from the collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
cleanup (True) β whether to execute the runβs
BaseRun.cleanup()
methods
- ensure_requirements()#
Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- ensure_usage_requirements()#
Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- classmethod from_config(config)#
Instantiates a Configurable class from a <cls>Config instance.
- classmethod from_dict(d)#
Instantiates a Configurable class from a <cls>Config dict.
- Parameters:
d β a dict to construct a <cls>Config
- Returns:
an instance of cls
- classmethod from_json(json_path)#
Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters:
json_path β path to a JSON file for type <cls>Config
- Returns:
an instance of cls
- classmethod from_kwargs(**kwargs)#
Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters:
**kwargs β keyword arguments that define the fields of a <cls>Config dict
- Returns:
an instance of cls
- get_fields(samples, anno_key)#
Gets the fields that were involved in the given run.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
- Returns:
a list of fields
- classmethod get_run_info(samples, key)#
Gets the
BaseRunInfo
for the given key on the collection.- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
- Returns:
a
BaseRunInfo
- classmethod has_cached_run_results(samples, key)#
Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
- Returns:
True/False
- classmethod list_runs(samples, type=None, method=None, **kwargs)#
Returns the list of run keys on the given collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
type (None) β
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) β a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs β optional config parameters to match
- Returns:
a list of run keys
- classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#
Loads the
BaseRunResults
for the given key on the collection.- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
cache (True) β whether to cache the results on the collection
load_view (True) β whether to load the run view in the results (True) or the full dataset (False)
**kwargs β keyword arguments for the runβs
BaseRunConfig.load_credentials()
method
- Returns:
a
BaseRunResults
, or None if the run did not save results
- classmethod load_run_view(samples, key, select_fields=False)#
Loads the view on which the specified run was performed.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
select_fields (False) β whether to exclude fields involved in other runs of the same type
- Returns:
- static parse(class_name, module_name=None)#
Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters:
class_name β a string containing the name of the Configurable class, e.g. βClassNameβ, or a fully-qualified class name, e.g. βeta.core.config.ClassNameβ
module_name β a string containing the fully-qualified module name, e.g. βeta.core.configβ, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns:
the Configurable class config_cls: the Config class associated with cls
- Return type:
cls
- register_run(samples, key, overwrite=True, cleanup=True)#
Registers a run of this method under the given key on the given collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
overwrite (True) β whether to allow overwriting an existing run of the same type
cleanup (True) β whether to execute an existing runβs
BaseRun.cleanup()
method when overwriting it
- rename(samples, key, new_key)#
Performs any necessary operations required to rename this runβs key.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
new_key β a new run key
- classmethod run_info_cls()#
The
BaseRunInfo
class associated with this class.
- classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#
Saves the run information on the collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
run_info β a
BaseRunInfo
overwrite (True) β whether to overwrite an existing run with the same key
cleanup (True) β whether to execute an existing runβs
BaseRun.cleanup()
method when overwriting it
- classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#
Saves the run results on the collection.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
run_results β a
BaseRunResults
, or Noneoverwrite (True) β whether to overwrite an existing result with the same key
cache (True) β whether to cache the results on the collection
- property supports_clips_views#
Whether this backend supports annotating clips views.
- classmethod update_run_config(samples, key, config)#
Updates the
BaseRunConfig
for the given run on the collection.- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
config β a
BaseRunConfig
- classmethod update_run_key(samples, key, new_key)#
Replaces the key for the given run with a new key.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
new_key β a new run key
- use_api(api)#
Registers an API instance to use for subsequent operations.
- Parameters:
api β an
AnnotationAPI
- classmethod validate(config)#
Validates that the given config is an instance of <cls>Config.
- Raises:
ConfigurableError β if config is not an instance of <cls>Config
- validate_run(samples, key, overwrite=True)#
Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
key β a run key
overwrite (True) β whether to allow overwriting an existing run of the same type
- Raises:
ValueError β if the run is invalid
- class fiftyone.utils.labelbox.LabelboxAnnotationAPI(name, url, api_key=None, export_version='v2', _experimental=False)#
Bases:
AnnotationAPI
A class to facilitate connection to and management of projects in Labelbox.
On initialization, this class constructs a client based on the provided server url and credentials.
This API provides methods to easily upload, download, create, and delete projects and data through the formatted urls specified by the Labelbox API.
Additionally, samples and label schemas can be uploaded and annotations downloaded through this class.
- Parameters:
name β the name of the backend
url β url of the Labelbox server
api_key (None) β the Labelbox API key
export_version ("v2") β the Labelbox export format and API version to use. Supported values are
("v1", "v2")
Attributes:
Methods:
project_url
(project_id)editor_url
(project_id)get_project_users
([project,Β project_id])Returns a list of users that are assigned to the given project.
add_member
(project,Β email,Β role)Adds a member to the given Labelbox project with the given project-level role.
Retrieves the list of datasets in your Labelbox account.
delete_datasets
(dataset_ids[,Β progress])Deletes the given datasets from the Labelbox server.
Retrieves the list of projects in your Labelbox account.
get_project
(project_id)Retrieves the
labelbox.schema.project.Project
for the project with the given ID.delete_project
(project_id[,Β delete_batches,Β ...])Deletes the given project from the Labelbox server.
delete_projects
(project_ids[,Β delete_batches])Deletes the given projects from the Labelbox server.
Deletes unused ontologies from the Labelbox server.
launch_editor
([url])Launches the Labelbox editor in your default web browser.
upload_data
(samples,Β dataset_name[,Β media_field])Uploads the media for the given samples to Labelbox.
upload_samples
(samples,Β anno_key,Β backend)Uploads the given samples to Labelbox according to the given backend's annotation and server configuration.
get_data_row_ids
(sample_ids)download_annotations
(results)Downloads the annotations from the Labelbox server for the given results instance and parses them into the appropriate FiftyOne types.
close
()Closes the API session.
- property roles#
- property attr_type_map#
- property attr_list_types#
- property base_api_url#
- property base_graphql_url#
- property projects_url#
- project_url(project_id)#
- editor_url(project_id)#
- get_project_users(project=None, project_id=None)#
Returns a list of users that are assigned to the given project.
Provide either
project
orproject_id
to this method.- Parameters:
project β a
labelbox.schema.project.Project
project_id β the project ID
- Returns:
a list of
labelbox.schema.user.User
objects
- add_member(project, email, role)#
Adds a member to the given Labelbox project with the given project-level role.
If the user is not a member of the projectβs parent organization, an email invitivation will be sent.
- Parameters:
project β the
labelbox.schema.project.Project
email β the email of the user
role β the role for the user. Supported values are
["LABELER", "REVIEWER", "TEAM_MANAGER", "ADMIN"]
- list_datasets()#
Retrieves the list of datasets in your Labelbox account.
- Returns:
a list of dataset IDs
- delete_datasets(dataset_ids, progress=None)#
Deletes the given datasets from the Labelbox server.
- Parameters:
dataset_ids β an iterable of dataset IDs
progress (None) β whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- list_projects()#
Retrieves the list of projects in your Labelbox account.
- Returns:
a list of project IDs
- get_project(project_id)#
Retrieves the
labelbox.schema.project.Project
for the project with the given ID.- Parameters:
project_id β the project ID
- Returns:
a
labelbox.schema.project.Project
- delete_project(project_id, delete_batches=False, delete_ontologies=True)#
Deletes the given project from the Labelbox server.
- Parameters:
project_id β the project ID
delete_batches (False) β whether to delete the attached batches as well
delete_ontologies (True) β whether to delete the attached ontologies as well
- delete_projects(project_ids, delete_batches=False)#
Deletes the given projects from the Labelbox server.
- Parameters:
project_ids β an iterable of project IDs
delete_batches (False) β whether to delete the attached batches as well
- delete_unused_ontologies()#
Deletes unused ontologies from the Labelbox server.
- launch_editor(url=None)#
Launches the Labelbox editor in your default web browser.
- Parameters:
url (None) β an optional URL to open. By default, the base URL of the server is opened
- upload_data(samples, dataset_name, media_field='filepath')#
Uploads the media for the given samples to Labelbox.
This method uses
labelbox.schema.dataset.Dataset.create_data_rows()
to add data in batches, and sets the global key of each DataRow to the ID of the corresponding sample.- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
containing the media to uploaddataset_name β the name of the Labelbox dataset created if data needs to be uploaded
media_field ("filepath") β string field name containing the paths to media files on disk to upload
- upload_samples(samples, anno_key, backend)#
Uploads the given samples to Labelbox according to the given backendβs annotation and server configuration.
- Parameters:
samples β a
fiftyone.core.collections.SampleCollection
anno_key β the annotation key
backend β a
LabelboxBackend
to use to perform the upload
- Returns:
- get_data_row_ids(sample_ids)#
- download_annotations(results)#
Downloads the annotations from the Labelbox server for the given results instance and parses them into the appropriate FiftyOne types.
- Parameters:
results β a
LabelboxAnnotationResults
- Returns:
the annotations dict
- close()#
Closes the API session.
- class fiftyone.utils.labelbox.LabelboxAnnotationResults(samples, config, anno_key, id_map, project_id, frame_id_map, backend=None)#
Bases:
AnnotationResults
Class that stores all relevant information needed to monitor the progress of an annotation run sent to Labelbox and download the results.
Methods:
Launches the Labelbox editor and loads the project for this annotation run.
Gets the status of the annotation run.
Prints the status of the annotation run.
cleanup
()Deletes the project associated with this annotation run from the Labelbox server.
Returns the list of class attributes that will be serialized by
serialize()
.base_results_cls
(type)Returns the results class for the given run type.
Returns an API instance connected to the annotation backend.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic,Β private])Returns a customizable list of class attributes.
from_dict
(d,Β samples,Β config,Β key)Builds a
BaseRunResults
from a JSON dict representation of it.from_json
(path,Β *args,Β **kwargs)Constructs a Serializable object from a JSON file.
from_str
(s,Β *args,Β **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
save
()Saves the results to the database.
Saves these results config to the database.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
use_api
(api)Registers an API instance to use for subsequent operations.
write_json
(path[,Β pretty_print])Serializes the object and writes it to disk.
Attributes:
The
BaseRun
for these results.The fully-qualified name of this
BaseRunResults
class.The
BaseRunConfig
for these results.The run key for these results.
The
fiftyone.core.collections.SampleCollection
associated with these results.- launch_editor()#
Launches the Labelbox editor and loads the project for this annotation run.
- get_status()#
Gets the status of the annotation run.
- Returns:
a dict of status information
- print_status()#
Prints the status of the annotation run.
- cleanup()#
Deletes the project associated with this annotation run from the Labelbox server.
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- property backend#
The
BaseRun
for these results.
- static base_results_cls(type)#
Returns the results class for the given run type.
- Parameters:
type β a
BaseRunConfig.type
- Returns:
a
BaseRunResults
subclass
- property cls#
The fully-qualified name of this
BaseRunResults
class.
- property config#
The
BaseRunConfig
for these results.
- connect_to_api()#
Returns an API instance connected to the annotation backend.
Existing API instances are reused, if available.
Some annotation backends may not expose this functionality.
- Returns:
an
AnnotationAPI
, orNone
if the backend does not expose an API
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with β_β).
- Parameters:
dynamic β whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private β whether to include private properties, i.e., those starting with β_β. By default, this is False
- Returns:
a list of class attributes
- classmethod from_dict(d, samples, config, key)#
Builds a
BaseRunResults
from a JSON dict representation of it.- Parameters:
d β a JSON dict
samples β the
fiftyone.core.collections.SampleCollection
for the runconfig β the
BaseRunConfig
for the runkey β the run key
- Returns:
a
BaseRunResults
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path β the path to the JSON file on disk
*args β optional positional arguments for self.from_dict()
**kwargs β optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s β a JSON string representation of a Serializable object
*args β optional positional arguments for self.from_dict()
**kwargs β optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- property key#
The run key for these results.
- property samples#
The
fiftyone.core.collections.SampleCollection
associated with these results.
- save()#
Saves the results to the database.
- save_config()#
Saves these results config to the database.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective β whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print β whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs β optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- use_api(api)#
Registers an API instance to use for subsequent operations.
- Parameters:
api β an
AnnotationAPI
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path β the output path
pretty_print β whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs β optional keyword arguments for self.serialize()
- fiftyone.utils.labelbox.import_from_labelbox(dataset, json_path, label_prefix=None, download_dir=None, labelbox_id_field='labelbox_id', progress=None)#
Imports the labels from the Labelbox project into the FiftyOne dataset.
The
labelbox_id_field
of the FiftyOne samples are used to associate the corresponding Labelbox labels.If a
download_dir
is provided, any Labelbox IDs with no matching FiftyOne sample are added to the FiftyOne dataset, and their media is downloaded intodownload_dir
.The provided
json_path
should contain a JSON file in the following format:[ { "DataRow ID": <labelbox-id>, "Labeled Data": <url-or-None>, "Label": {...} } ]
When importing image labels, the
Label
field should contain a dict of Labelbox image labels:{ "objects": [...], "classifications": [...] }
When importing video labels, the
Label
field should contain a dict as follows:{ "frames": <url-or-filepath> }
where the
frames
field can either contain a URL, in which case the file is downloaded from the web, or the path to NDJSON file on disk of Labelbox video labels:{"frameNumber": 1, "objects": [...], "classifications": [...]} {"frameNumber": 2, "objects": [...], "classifications": [...]} ...
- Parameters:
dataset β a
fiftyone.core.dataset.Dataset
json_path β the path to the Labelbox JSON export to load
label_prefix (None) β a prefix to prepend to the sample label field(s) that are created, separated by an underscore
download_dir (None) β a directory into which to download the media for any Labelbox IDs with no corresponding sample with the matching
labelbox_id_field
value. This can be omitted if all IDs are already present or you do not wish to download media and add new sampleslabelbox_id_field ("labelbox_id") β the sample field to lookup/store the IDs of the Labelbox DataRows
progress (None) β whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- fiftyone.utils.labelbox.export_to_labelbox(sample_collection, ndjson_path, video_labels_dir=None, labelbox_id_field='labelbox_id', label_field=None, frame_labels_field=None, progress=None)#
Exports labels from the FiftyOne samples to Labelbox format.
This function is useful for loading predictions into Labelbox for model-assisted labeling.
You can use
upload_labels_to_labelbox()
to upload the exported labels to a Labelbox project.You can use
upload_media_to_labelbox()
to upload sample media to Labelbox and populate thelabelbox_id_field
field, if necessary.The IDs of the Labelbox DataRows corresponding to each sample must be stored in the
labelbox_id_field
of the samples. Any samples with no value inlabelbox_id_field
will be skipped.When exporting frame labels for video datasets, the
frames
key of the exported labels will contain the paths on disk to per-sample NDJSON files that are written tovideo_labels_dir
as follows:video_labels_dir/ <labelbox-id1>.json <labelbox-id2>.json ...
where each NDJSON file contains the frame labels for the video with the corresponding Labelbox ID.
- Parameters:
sample_collection β a
fiftyone.core.collections.SampleCollection
ndjson_path β the path to write an NDJSON export of the labels
video_labels_dir (None) β a directory to write the per-sample video labels. Only applicable for video datasets
labelbox_id_field ("labelbox_id") β the sample field to lookup/store the IDs of the Labelbox DataRows
label_field (None) β
optional label field(s) to export. Can be any of the following:
the name of a label field to export
a glob pattern of label field(s) to export
a list or tuple of label field(s) to export
a dictionary mapping label field names to keys to use when constructing the exported labels
By default, no labels are exported
frame_labels_field (None) β
optional frame label field(s) to export. Only applicable to video datasets. Can be any of the following:
the name of a frame label field to export
a glob pattern of frame label field(s) to export
a list or tuple of frame label field(s) to export
a dictionary mapping frame label field names to keys to use when constructing the exported frame labels
By default, no frame labels are exported
progress (None) β whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- fiftyone.utils.labelbox.download_labels_from_labelbox(labelbox_project, outpath=None, export_version='v2')#
Downloads the labels for the given Labelbox project.
- Parameters:
labelbox_project β a
labelbox.schema.project.Project
outpath (None) β the path to write the JSON export on disk
export_version ("v2") β the Labelbox export format and API version to use. Supported values are
("v1", "v2")
- Returns:
None
if anoutpath
is provided, or the loaded JSON itself if nooutpath
is provided
- fiftyone.utils.labelbox.upload_media_to_labelbox(labelbox_dataset, sample_collection, labelbox_id_field='labelbox_id', progress=None)#
Uploads the raw media for the FiftyOne samples to Labelbox.
The IDs of the Labelbox DataRows that are created are stored in the
labelbox_id_field
of the samples.- Parameters:
labelbox_dataset β a
labelbox.schema.dataset.Dataset
to which to add the mediasample_collection β a
fiftyone.core.collections.SampleCollection
labelbox_id_field ("labelbox_id") β the sample field in which to store the IDs of the Labelbox DataRows
progress (None) β whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- fiftyone.utils.labelbox.upload_labels_to_labelbox(labelbox_project, annos_or_ndjson_path, batch_size=None)#
Uploads labels to a Labelbox project.
Use this function to load predictions into Labelbox for model-assisted labeling.
Use
export_to_labelbox()
to export annotations in the format expected by this method.- Parameters:
labelbox_project β a
labelbox.schema.project.Project
annos_or_ndjson_path β a list of annotation dicts or the path to an NDJSON file on disk containing annotations
batch_size (None) β an optional batch size to use when uploading the annotations. By default,
annos_or_ndjson_path
is passed directly tolabelbox_project.upload_annotations()
- fiftyone.utils.labelbox.convert_labelbox_export_to_import(inpath, outpath=None, video_outdir=None)#
Converts a Labelbox NDJSON export generated by
export_to_labelbox()
into the format expected byimport_from_labelbox()
.The output JSON file will have the same format that is generated when exporting a Labelbox projectβs labels.
The
Labeled Data
fields of the output labels will beNone
.- Parameters:
inpath β the path to an NDJSON file generated (for example) by
export_to_labelbox()
outpath (None) β the path to write a JSON file containing the converted labels. If omitted, the input file will be overwritten
video_outdir (None) β a directory to write the converted video frame labels (if applicable). If omitted, the input frame label files will be overwritten