fiftyone.utils.eval.classification#
Classification evaluation.
Functions:
|
Evaluates the classification predictions in the given collection with respect to the specified ground truth labels. |
Classes:
|
Base class for configuring |
|
Base class for classification evaluation methods. |
|
Simple classification evaluation config. |
|
Standard classification evaluation. |
|
Top-k classification evaluation config. |
|
Top-k classification evaluation. |
|
Binary evaluation config. |
|
Binary classification evaluation. |
|
Class that stores the results of a classification evaluation. |
|
Class that stores the results of a binary classification evaluation. |
- fiftyone.utils.eval.classification.evaluate_classifications(samples, pred_field, gt_field='ground_truth', eval_key=None, classes=None, missing=None, method=None, custom_metrics=None, progress=None, **kwargs)#
Evaluates the classification predictions in the given collection with respect to the specified ground truth labels.
By default, this method simply compares the ground truth and prediction for each sample, but other strategies such as binary evaluation and top-k matching can be configured via the
method
parameter.You can customize the evaluation method by passing additional parameters for the method’s config class as
kwargs
.The natively provided
method
values and their associated configs are:"simple"
:SimpleEvaluationConfig
"top-k"
:TopKEvaluationConfig
"binary"
:BinaryEvaluationConfig
If an
eval_key
is specified, then this method will record some statistics on each sample:When evaluating sample-level fields, an
eval_key
field will be populated on each sample recording whether that sample’s prediction is correct.When evaluating frame-level fields, an
eval_key
field will be populated on each frame recording whether that frame’s prediction is correct. In addition, aneval_key
field will be populated on each sample that records the average accuracy of the frame predictions of the sample.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
pred_field – the name of the field containing the predicted
fiftyone.core.labels.Classification
instancesgt_field ("ground_truth") – the name of the field containing the ground truth
fiftyone.core.labels.Classification
instanceseval_key (None) – an evaluation key to use to refer to this evaluation
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used
missing (None) – a missing label string. Any None-valued labels are given this label for results purposes
method (None) – a string specifying the evaluation method to use. The supported values are
fo.evaluation_config.classification_backends.keys()
and the default isfo.evaluation_config.default_classification_backend
custom_metrics (None) – an optional list of custom metrics to compute or dict mapping metric names to kwargs dicts
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead**kwargs – optional keyword arguments for the constructor of the
ClassificationEvaluationConfig
being used
- Returns:
- class fiftyone.utils.eval.classification.ClassificationEvaluationConfig(pred_field, gt_field, custom_metrics=None, **kwargs)#
Bases:
BaseEvaluationMethodConfig
Base class for configuring
ClassificationEvaluation
instances.- Parameters:
pred_field – the name of the field containing the predicted
fiftyone.core.labels.Classification
instancesgt_field – the name of the field containing the ground truth
fiftyone.core.labels.Classification
instancescustom_metrics (None) – an optional list of custom metrics to compute or dict mapping metric names to kwargs dicts
Attributes:
The type of run.
The fully-qualified name of this
BaseRunConfig
class.The name of the method.
The
BaseRun
class associated with this config.Methods:
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
load_credentials
(**kwargs)Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
- property type#
The type of run.
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- static base_config_cls(type)#
Returns the config class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunConfig
subclass
- build()#
Builds the
BaseRun
instance associated with this config.- Returns:
a
BaseRun
instance
- classmethod builder()#
Returns a ConfigBuilder instance for this class.
- property cls#
The fully-qualified name of this
BaseRunConfig
class.
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod default()#
Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
- classmethod from_dict(d)#
Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters:
d – a JSON dict
- Returns:
a
BaseRunConfig
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_kwargs(**kwargs)#
Constructs a Config object from keyword arguments.
- Parameters:
**kwargs – keyword arguments that define the fields expected by cls
- Returns:
an instance of cls
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- load_credentials(**kwargs)#
Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters:
**kwargs – subclass-specific credentials
- classmethod load_default()#
Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
- property method#
The name of the method.
- static parse_array(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw array attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns:
a list of raw (untouched) values
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#
Parses a boolean value.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns:
True/False
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#
Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters:
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises:
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
- static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#
Parses a dictionary attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns:
a dictionary
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_int(d, key, default=<eta.core.config.NoDefault object>)#
Parses an integer attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns:
an int
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_mutually_exclusive_fields(fields)#
Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Returns:
the (field, value) that was set
- Raises:
ConfigError – if zero or more than one truthy value was found
- static parse_number(d, key, default=<eta.core.config.NoDefault object>)#
Parses a number attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns:
a number (e.g. int, float)
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns:
an instance of cls
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns:
a list of cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns:
a dictionary whose values are cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_path(d, key, default=<eta.core.config.NoDefault object>)#
Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a path string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw (arbitrary) JSON field.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field
- Raises:
ConfigError – if no default value was provided and the key was not found in the dictionary
- static parse_string(d, key, default=<eta.core.config.NoDefault object>)#
Parses a string attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- property run_cls#
The
BaseRun
class associated with this config.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- static validate_all_or_nothing_fields(fields)#
Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Raises:
ConfigError – if some values are truth and some are not
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
- class fiftyone.utils.eval.classification.ClassificationEvaluation(config)#
Bases:
BaseEvaluationMethod
Base class for classification evaluation methods.
- Parameters:
config – a
ClassificationEvaluationConfig
Methods:
register_samples
(samples, eval_key)Registers the collection on which evaluation will be performed.
evaluate_samples
(samples[, eval_key, ...])Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
get_fields
(samples, eval_key[, ...])Gets the fields that were involved in the given run.
rename
(samples, eval_key, new_eval_key)Performs any necessary operations required to rename this run's key.
cleanup
(samples, eval_key)Cleans up the results of the run with the given key from the collection.
add_fields_to_sidebar_group
(samples, eval_key)cleanup_custom_metrics
(samples, eval_key[, ...])compute_custom_metrics
(samples, eval_key, ...)delete_run
(samples, key[, cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[, cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_custom_metric_fields
(samples, eval_key)get_run_info
(samples, key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples, key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[, type, method])Returns the list of run keys on the given collection.
load_run_results
(samples, key[, cache, ...])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples, key[, select_fields])Loads the view on which the specified run was performed.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
register_run
(samples, key[, overwrite, cleanup])Registers a run of this method under the given key on the given collection.
rename_custom_metrics
(samples, eval_key, ...)The
BaseRunInfo
class associated with this class.save_run_info
(samples, run_info[, ...])Saves the run information on the collection.
save_run_results
(samples, key, run_results)Saves the run results on the collection.
update_run_config
(samples, key, config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples, key, new_key)Replaces the key for the given run with a new key.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples, key[, overwrite])Validates that the collection can accept this run.
- register_samples(samples, eval_key)#
Registers the collection on which evaluation will be performed.
This method will be called before calling
evaluate_samples()
. Subclasses can extend this method to perform any setup required for an evaluation run.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key – the evaluation key for this evaluation
- evaluate_samples(samples, eval_key=None, classes=None, missing=None, progress=None)#
Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key (None) – an evaluation key for this evaluation
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used for results purposes
missing (None) – a missing label string. Any None-valued labels are given this label for results purposes
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- Returns:
a
ClassificationResults
instance
- get_fields(samples, eval_key, include_custom_metrics=True)#
Gets the fields that were involved in the given run.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a list of fields
- rename(samples, eval_key, new_eval_key)#
Performs any necessary operations required to rename this run’s key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- cleanup(samples, eval_key)#
Cleans up the results of the run with the given key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- add_fields_to_sidebar_group(samples, eval_key, omit_fields=None)#
- cleanup_custom_metrics(samples, eval_key, metric_uris=None)#
- compute_custom_metrics(samples, eval_key, results, metric_uris=None)#
- classmethod delete_run(samples, key, cleanup=True)#
Deletes the results associated with the given run key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
method
- classmethod delete_runs(samples, cleanup=True)#
Deletes all runs from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
methods
- ensure_requirements()#
Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- ensure_usage_requirements()#
Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- classmethod from_config(config)#
Instantiates a Configurable class from a <cls>Config instance.
- classmethod from_dict(d)#
Instantiates a Configurable class from a <cls>Config dict.
- Parameters:
d – a dict to construct a <cls>Config
- Returns:
an instance of cls
- classmethod from_json(json_path)#
Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters:
json_path – path to a JSON file for type <cls>Config
- Returns:
an instance of cls
- classmethod from_kwargs(**kwargs)#
Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters:
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns:
an instance of cls
- get_custom_metric_fields(samples, eval_key, metric_uris=None)#
- classmethod get_run_info(samples, key)#
Gets the
BaseRunInfo
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a
BaseRunInfo
- classmethod has_cached_run_results(samples, key)#
Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
True/False
- classmethod list_runs(samples, type=None, method=None, **kwargs)#
Returns the list of run keys on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
type (None) –
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) – a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs – optional config parameters to match
- Returns:
a list of run keys
- classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#
Loads the
BaseRunResults
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cache (True) – whether to cache the results on the collection
load_view (True) – whether to load the run view in the results (True) or the full dataset (False)
**kwargs – keyword arguments for the run’s
BaseRunConfig.load_credentials()
method
- Returns:
a
BaseRunResults
, or None if the run did not save results
- classmethod load_run_view(samples, key, select_fields=False)#
Loads the view on which the specified run was performed.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
select_fields (False) – whether to exclude fields involved in other runs of the same type
- Returns:
- static parse(class_name, module_name=None)#
Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters:
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns:
the Configurable class config_cls: the Config class associated with cls
- Return type:
cls
- register_run(samples, key, overwrite=True, cleanup=True)#
Registers a run of this method under the given key on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- rename_custom_metrics(samples, eval_key, new_eval_key, metric_uris=None)#
- classmethod run_info_cls()#
The
BaseRunInfo
class associated with this class.
- classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#
Saves the run information on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
run_info – a
BaseRunInfo
overwrite (True) – whether to overwrite an existing run with the same key
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#
Saves the run results on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
run_results – a
BaseRunResults
, or Noneoverwrite (True) – whether to overwrite an existing result with the same key
cache (True) – whether to cache the results on the collection
- classmethod update_run_config(samples, key, config)#
Updates the
BaseRunConfig
for the given run on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
config – a
BaseRunConfig
- classmethod update_run_key(samples, key, new_key)#
Replaces the key for the given run with a new key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- classmethod validate(config)#
Validates that the given config is an instance of <cls>Config.
- Raises:
ConfigurableError – if config is not an instance of <cls>Config
- validate_run(samples, key, overwrite=True)#
Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
- Raises:
ValueError – if the run is invalid
- class fiftyone.utils.eval.classification.SimpleEvaluationConfig(pred_field, gt_field, custom_metrics=None, **kwargs)#
Bases:
ClassificationEvaluationConfig
Simple classification evaluation config.
- Parameters:
pred_field – the name of the field containing the predicted
fiftyone.core.labels.Classification
instancesgt_field – the name of the field containing the ground truth
fiftyone.core.labels.Classification
instancescustom_metrics (None) – an optional list of custom metrics to compute or dict mapping metric names to kwargs dicts
Attributes:
The name of the method.
The fully-qualified name of this
BaseRunConfig
class.The
BaseRun
class associated with this config.The type of run.
Methods:
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
load_credentials
(**kwargs)Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
- property method#
The name of the method.
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- static base_config_cls(type)#
Returns the config class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunConfig
subclass
- build()#
Builds the
BaseRun
instance associated with this config.- Returns:
a
BaseRun
instance
- classmethod builder()#
Returns a ConfigBuilder instance for this class.
- property cls#
The fully-qualified name of this
BaseRunConfig
class.
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod default()#
Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
- classmethod from_dict(d)#
Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters:
d – a JSON dict
- Returns:
a
BaseRunConfig
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_kwargs(**kwargs)#
Constructs a Config object from keyword arguments.
- Parameters:
**kwargs – keyword arguments that define the fields expected by cls
- Returns:
an instance of cls
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- load_credentials(**kwargs)#
Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters:
**kwargs – subclass-specific credentials
- classmethod load_default()#
Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
- static parse_array(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw array attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns:
a list of raw (untouched) values
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#
Parses a boolean value.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns:
True/False
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#
Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters:
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises:
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
- static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#
Parses a dictionary attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns:
a dictionary
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_int(d, key, default=<eta.core.config.NoDefault object>)#
Parses an integer attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns:
an int
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_mutually_exclusive_fields(fields)#
Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Returns:
the (field, value) that was set
- Raises:
ConfigError – if zero or more than one truthy value was found
- static parse_number(d, key, default=<eta.core.config.NoDefault object>)#
Parses a number attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns:
a number (e.g. int, float)
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns:
an instance of cls
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns:
a list of cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns:
a dictionary whose values are cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_path(d, key, default=<eta.core.config.NoDefault object>)#
Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a path string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw (arbitrary) JSON field.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field
- Raises:
ConfigError – if no default value was provided and the key was not found in the dictionary
- static parse_string(d, key, default=<eta.core.config.NoDefault object>)#
Parses a string attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- property run_cls#
The
BaseRun
class associated with this config.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- property type#
The type of run.
- static validate_all_or_nothing_fields(fields)#
Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Raises:
ConfigError – if some values are truth and some are not
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
- class fiftyone.utils.eval.classification.SimpleEvaluation(config)#
Bases:
ClassificationEvaluation
Standard classification evaluation.
- Parameters:
config – a
SimpleClassificationEvaluationConfig
Methods:
register_samples
(samples, eval_key)Registers the collection on which evaluation will be performed.
evaluate_samples
(samples[, eval_key, ...])Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
add_fields_to_sidebar_group
(samples, eval_key)cleanup
(samples, eval_key)Cleans up the results of the run with the given key from the collection.
cleanup_custom_metrics
(samples, eval_key[, ...])compute_custom_metrics
(samples, eval_key, ...)delete_run
(samples, key[, cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[, cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_custom_metric_fields
(samples, eval_key)get_fields
(samples, eval_key[, ...])Gets the fields that were involved in the given run.
get_run_info
(samples, key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples, key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[, type, method])Returns the list of run keys on the given collection.
load_run_results
(samples, key[, cache, ...])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples, key[, select_fields])Loads the view on which the specified run was performed.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
register_run
(samples, key[, overwrite, cleanup])Registers a run of this method under the given key on the given collection.
rename
(samples, eval_key, new_eval_key)Performs any necessary operations required to rename this run's key.
rename_custom_metrics
(samples, eval_key, ...)The
BaseRunInfo
class associated with this class.save_run_info
(samples, run_info[, ...])Saves the run information on the collection.
save_run_results
(samples, key, run_results)Saves the run results on the collection.
update_run_config
(samples, key, config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples, key, new_key)Replaces the key for the given run with a new key.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples, key[, overwrite])Validates that the collection can accept this run.
- register_samples(samples, eval_key)#
Registers the collection on which evaluation will be performed.
This method will be called before calling
evaluate_samples()
. Subclasses can extend this method to perform any setup required for an evaluation run.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key – the evaluation key for this evaluation
- evaluate_samples(samples, eval_key=None, classes=None, missing=None, progress=None)#
Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key (None) – an evaluation key for this evaluation
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used for results purposes
missing (None) – a missing label string. Any None-valued labels are given this label for results purposes
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- Returns:
a
ClassificationResults
instance
- add_fields_to_sidebar_group(samples, eval_key, omit_fields=None)#
- cleanup(samples, eval_key)#
Cleans up the results of the run with the given key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- cleanup_custom_metrics(samples, eval_key, metric_uris=None)#
- compute_custom_metrics(samples, eval_key, results, metric_uris=None)#
- classmethod delete_run(samples, key, cleanup=True)#
Deletes the results associated with the given run key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
method
- classmethod delete_runs(samples, cleanup=True)#
Deletes all runs from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
methods
- ensure_requirements()#
Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- ensure_usage_requirements()#
Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- classmethod from_config(config)#
Instantiates a Configurable class from a <cls>Config instance.
- classmethod from_dict(d)#
Instantiates a Configurable class from a <cls>Config dict.
- Parameters:
d – a dict to construct a <cls>Config
- Returns:
an instance of cls
- classmethod from_json(json_path)#
Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters:
json_path – path to a JSON file for type <cls>Config
- Returns:
an instance of cls
- classmethod from_kwargs(**kwargs)#
Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters:
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns:
an instance of cls
- get_custom_metric_fields(samples, eval_key, metric_uris=None)#
- get_fields(samples, eval_key, include_custom_metrics=True)#
Gets the fields that were involved in the given run.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a list of fields
- classmethod get_run_info(samples, key)#
Gets the
BaseRunInfo
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a
BaseRunInfo
- classmethod has_cached_run_results(samples, key)#
Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
True/False
- classmethod list_runs(samples, type=None, method=None, **kwargs)#
Returns the list of run keys on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
type (None) –
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) – a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs – optional config parameters to match
- Returns:
a list of run keys
- classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#
Loads the
BaseRunResults
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cache (True) – whether to cache the results on the collection
load_view (True) – whether to load the run view in the results (True) or the full dataset (False)
**kwargs – keyword arguments for the run’s
BaseRunConfig.load_credentials()
method
- Returns:
a
BaseRunResults
, or None if the run did not save results
- classmethod load_run_view(samples, key, select_fields=False)#
Loads the view on which the specified run was performed.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
select_fields (False) – whether to exclude fields involved in other runs of the same type
- Returns:
- static parse(class_name, module_name=None)#
Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters:
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns:
the Configurable class config_cls: the Config class associated with cls
- Return type:
cls
- register_run(samples, key, overwrite=True, cleanup=True)#
Registers a run of this method under the given key on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- rename(samples, eval_key, new_eval_key)#
Performs any necessary operations required to rename this run’s key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- rename_custom_metrics(samples, eval_key, new_eval_key, metric_uris=None)#
- classmethod run_info_cls()#
The
BaseRunInfo
class associated with this class.
- classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#
Saves the run information on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
run_info – a
BaseRunInfo
overwrite (True) – whether to overwrite an existing run with the same key
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#
Saves the run results on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
run_results – a
BaseRunResults
, or Noneoverwrite (True) – whether to overwrite an existing result with the same key
cache (True) – whether to cache the results on the collection
- classmethod update_run_config(samples, key, config)#
Updates the
BaseRunConfig
for the given run on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
config – a
BaseRunConfig
- classmethod update_run_key(samples, key, new_key)#
Replaces the key for the given run with a new key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- classmethod validate(config)#
Validates that the given config is an instance of <cls>Config.
- Raises:
ConfigurableError – if config is not an instance of <cls>Config
- validate_run(samples, key, overwrite=True)#
Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
- Raises:
ValueError – if the run is invalid
- class fiftyone.utils.eval.classification.TopKEvaluationConfig(pred_field, gt_field, k=5, custom_metrics=None, **kwargs)#
Bases:
ClassificationEvaluationConfig
Top-k classification evaluation config.
- Parameters:
pred_field – the name of the field containing the predicted
fiftyone.core.labels.Classification
instancesgt_field – the name of the field containing the ground truth
fiftyone.core.labels.Classification
instancesk (5) – the top-k value to use when assessing accuracy
custom_metrics (None) – an optional list of custom metrics to compute or dict mapping metric names to kwargs dicts
Attributes:
The name of the method.
The fully-qualified name of this
BaseRunConfig
class.The
BaseRun
class associated with this config.The type of run.
Methods:
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
load_credentials
(**kwargs)Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
- property method#
The name of the method.
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- static base_config_cls(type)#
Returns the config class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunConfig
subclass
- build()#
Builds the
BaseRun
instance associated with this config.- Returns:
a
BaseRun
instance
- classmethod builder()#
Returns a ConfigBuilder instance for this class.
- property cls#
The fully-qualified name of this
BaseRunConfig
class.
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod default()#
Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
- classmethod from_dict(d)#
Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters:
d – a JSON dict
- Returns:
a
BaseRunConfig
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_kwargs(**kwargs)#
Constructs a Config object from keyword arguments.
- Parameters:
**kwargs – keyword arguments that define the fields expected by cls
- Returns:
an instance of cls
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- load_credentials(**kwargs)#
Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters:
**kwargs – subclass-specific credentials
- classmethod load_default()#
Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
- static parse_array(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw array attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns:
a list of raw (untouched) values
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#
Parses a boolean value.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns:
True/False
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#
Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters:
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises:
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
- static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#
Parses a dictionary attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns:
a dictionary
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_int(d, key, default=<eta.core.config.NoDefault object>)#
Parses an integer attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns:
an int
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_mutually_exclusive_fields(fields)#
Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Returns:
the (field, value) that was set
- Raises:
ConfigError – if zero or more than one truthy value was found
- static parse_number(d, key, default=<eta.core.config.NoDefault object>)#
Parses a number attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns:
a number (e.g. int, float)
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns:
an instance of cls
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns:
a list of cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns:
a dictionary whose values are cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_path(d, key, default=<eta.core.config.NoDefault object>)#
Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a path string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw (arbitrary) JSON field.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field
- Raises:
ConfigError – if no default value was provided and the key was not found in the dictionary
- static parse_string(d, key, default=<eta.core.config.NoDefault object>)#
Parses a string attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- property run_cls#
The
BaseRun
class associated with this config.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- property type#
The type of run.
- static validate_all_or_nothing_fields(fields)#
Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Raises:
ConfigError – if some values are truth and some are not
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
- class fiftyone.utils.eval.classification.TopKEvaluation(config)#
Bases:
ClassificationEvaluation
Top-k classification evaluation.
This method requires the
logits
field of each predicted object to be populated, and the list of class labels corresponding to these logits must be provided.- Parameters:
config – a
TopKEvaluationConfig
Methods:
register_samples
(samples, eval_key)Registers the collection on which evaluation will be performed.
evaluate_samples
(samples[, eval_key, ...])Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
add_fields_to_sidebar_group
(samples, eval_key)cleanup
(samples, eval_key)Cleans up the results of the run with the given key from the collection.
cleanup_custom_metrics
(samples, eval_key[, ...])compute_custom_metrics
(samples, eval_key, ...)delete_run
(samples, key[, cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[, cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_custom_metric_fields
(samples, eval_key)get_fields
(samples, eval_key[, ...])Gets the fields that were involved in the given run.
get_run_info
(samples, key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples, key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[, type, method])Returns the list of run keys on the given collection.
load_run_results
(samples, key[, cache, ...])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples, key[, select_fields])Loads the view on which the specified run was performed.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
register_run
(samples, key[, overwrite, cleanup])Registers a run of this method under the given key on the given collection.
rename
(samples, eval_key, new_eval_key)Performs any necessary operations required to rename this run's key.
rename_custom_metrics
(samples, eval_key, ...)The
BaseRunInfo
class associated with this class.save_run_info
(samples, run_info[, ...])Saves the run information on the collection.
save_run_results
(samples, key, run_results)Saves the run results on the collection.
update_run_config
(samples, key, config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples, key, new_key)Replaces the key for the given run with a new key.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples, key[, overwrite])Validates that the collection can accept this run.
- register_samples(samples, eval_key)#
Registers the collection on which evaluation will be performed.
This method will be called before calling
evaluate_samples()
. Subclasses can extend this method to perform any setup required for an evaluation run.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key – the evaluation key for this evaluation
- evaluate_samples(samples, eval_key=None, classes=None, missing=None, progress=None)#
Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key (None) – an evaluation key for this evaluation
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used for results purposes
missing (None) – a missing label string. Any None-valued labels are given this label for results purposes
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- Returns:
a
ClassificationResults
instance
- add_fields_to_sidebar_group(samples, eval_key, omit_fields=None)#
- cleanup(samples, eval_key)#
Cleans up the results of the run with the given key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- cleanup_custom_metrics(samples, eval_key, metric_uris=None)#
- compute_custom_metrics(samples, eval_key, results, metric_uris=None)#
- classmethod delete_run(samples, key, cleanup=True)#
Deletes the results associated with the given run key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
method
- classmethod delete_runs(samples, cleanup=True)#
Deletes all runs from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
methods
- ensure_requirements()#
Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- ensure_usage_requirements()#
Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- classmethod from_config(config)#
Instantiates a Configurable class from a <cls>Config instance.
- classmethod from_dict(d)#
Instantiates a Configurable class from a <cls>Config dict.
- Parameters:
d – a dict to construct a <cls>Config
- Returns:
an instance of cls
- classmethod from_json(json_path)#
Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters:
json_path – path to a JSON file for type <cls>Config
- Returns:
an instance of cls
- classmethod from_kwargs(**kwargs)#
Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters:
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns:
an instance of cls
- get_custom_metric_fields(samples, eval_key, metric_uris=None)#
- get_fields(samples, eval_key, include_custom_metrics=True)#
Gets the fields that were involved in the given run.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a list of fields
- classmethod get_run_info(samples, key)#
Gets the
BaseRunInfo
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a
BaseRunInfo
- classmethod has_cached_run_results(samples, key)#
Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
True/False
- classmethod list_runs(samples, type=None, method=None, **kwargs)#
Returns the list of run keys on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
type (None) –
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) – a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs – optional config parameters to match
- Returns:
a list of run keys
- classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#
Loads the
BaseRunResults
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cache (True) – whether to cache the results on the collection
load_view (True) – whether to load the run view in the results (True) or the full dataset (False)
**kwargs – keyword arguments for the run’s
BaseRunConfig.load_credentials()
method
- Returns:
a
BaseRunResults
, or None if the run did not save results
- classmethod load_run_view(samples, key, select_fields=False)#
Loads the view on which the specified run was performed.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
select_fields (False) – whether to exclude fields involved in other runs of the same type
- Returns:
- static parse(class_name, module_name=None)#
Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters:
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns:
the Configurable class config_cls: the Config class associated with cls
- Return type:
cls
- register_run(samples, key, overwrite=True, cleanup=True)#
Registers a run of this method under the given key on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- rename(samples, eval_key, new_eval_key)#
Performs any necessary operations required to rename this run’s key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- rename_custom_metrics(samples, eval_key, new_eval_key, metric_uris=None)#
- classmethod run_info_cls()#
The
BaseRunInfo
class associated with this class.
- classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#
Saves the run information on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
run_info – a
BaseRunInfo
overwrite (True) – whether to overwrite an existing run with the same key
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#
Saves the run results on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
run_results – a
BaseRunResults
, or Noneoverwrite (True) – whether to overwrite an existing result with the same key
cache (True) – whether to cache the results on the collection
- classmethod update_run_config(samples, key, config)#
Updates the
BaseRunConfig
for the given run on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
config – a
BaseRunConfig
- classmethod update_run_key(samples, key, new_key)#
Replaces the key for the given run with a new key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- classmethod validate(config)#
Validates that the given config is an instance of <cls>Config.
- Raises:
ConfigurableError – if config is not an instance of <cls>Config
- validate_run(samples, key, overwrite=True)#
Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
- Raises:
ValueError – if the run is invalid
- class fiftyone.utils.eval.classification.BinaryEvaluationConfig(pred_field, gt_field, custom_metrics=None, **kwargs)#
Bases:
ClassificationEvaluationConfig
Binary evaluation config.
- Parameters:
pred_field – the name of the field containing the predicted
fiftyone.core.labels.Classification
instancesgt_field – the name of the field containing the ground truth
custom_metrics (None) – an optional list of custom metrics to compute or dict mapping metric names to kwargs dicts
Attributes:
The name of the method.
The fully-qualified name of this
BaseRunConfig
class.The
BaseRun
class associated with this config.The type of run.
Methods:
Returns the list of class attributes that will be serialized by
serialize()
.base_config_cls
(type)Returns the config class for the given run type.
build
()Builds the
BaseRun
instance associated with this config.builder
()Returns a ConfigBuilder instance for this class.
copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
default
()Returns the default config instance.
from_dict
(d)Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_kwargs
(**kwargs)Constructs a Config object from keyword arguments.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
load_credentials
(**kwargs)Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
Loads the default config instance from file.
parse_array
(d, key[, default])Parses a raw array attribute.
parse_bool
(d, key[, default])Parses a boolean value.
parse_categorical
(d, key, choices[, default])Parses a categorical JSON field, which must take a value from among the given choices.
parse_dict
(d, key[, default])Parses a dictionary attribute.
parse_int
(d, key[, default])Parses an integer attribute.
parse_mutually_exclusive_fields
(fields)Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
parse_number
(d, key[, default])Parses a number attribute.
parse_object
(d, key, cls[, default])Parses an object attribute.
parse_object_array
(d, key, cls[, default])Parses an array of objects.
parse_object_dict
(d, key, cls[, default])Parses a dictionary whose values are objects.
parse_path
(d, key[, default])Parses a path attribute.
parse_raw
(d, key[, default])Parses a raw (arbitrary) JSON field.
parse_string
(d, key[, default])Parses a string attribute.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
validate_all_or_nothing_fields
(fields)Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
- property method#
The name of the method.
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- static base_config_cls(type)#
Returns the config class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunConfig
subclass
- build()#
Builds the
BaseRun
instance associated with this config.- Returns:
a
BaseRun
instance
- classmethod builder()#
Returns a ConfigBuilder instance for this class.
- property cls#
The fully-qualified name of this
BaseRunConfig
class.
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod default()#
Returns the default config instance.
By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.
- classmethod from_dict(d)#
Constructs a
BaseRunConfig
from a serialized JSON dict representation of it.- Parameters:
d – a JSON dict
- Returns:
a
BaseRunConfig
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_kwargs(**kwargs)#
Constructs a Config object from keyword arguments.
- Parameters:
**kwargs – keyword arguments that define the fields expected by cls
- Returns:
an instance of cls
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- load_credentials(**kwargs)#
Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.
- Parameters:
**kwargs – subclass-specific credentials
- classmethod load_default()#
Loads the default config instance from file.
Subclasses must implement this method if they intend to support default instances.
- static parse_array(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw array attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default list to return if key is not present
- Returns:
a list of raw (untouched) values
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#
Parses a boolean value.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default bool to return if key is not present
- Returns:
True/False
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#
Parses a categorical JSON field, which must take a value from among the given choices.
- Parameters:
d – a JSON dictionary
key – the key to parse
choices – either an iterable of possible values or an enum-like class whose attributes define the possible values
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field, which is equal to a value from choices
- Raises:
ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary
- static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#
Parses a dictionary attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default dict to return if key is not present
- Returns:
a dictionary
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_int(d, key, default=<eta.core.config.NoDefault object>)#
Parses an integer attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default integer value to return if key is not present
- Returns:
an int
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_mutually_exclusive_fields(fields)#
Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Returns:
the (field, value) that was set
- Raises:
ConfigError – if zero or more than one truthy value was found
- static parse_number(d, key, default=<eta.core.config.NoDefault object>)#
Parses a number attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default numeric value to return if key is not present
- Returns:
a number (e.g. int, float)
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an object attribute.
The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of d[key]
default – a default cls instance to return if key is not present
- Returns:
an instance of cls
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses an array of objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the elements of list d[key]
default – the default list to return if key is not present
- Returns:
a list of cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#
Parses a dictionary whose values are objects.
The values in d[key] can be either instances of cls or serialized dicts from instances of cls.
- Parameters:
d – a JSON dictionary
key – the key to parse
cls – the class of the values of dictionary d[key]
default – the default dict of cls instances to return if key is not present
- Returns:
a dictionary whose values are cls instances
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_path(d, key, default=<eta.core.config.NoDefault object>)#
Parses a path attribute.
The path is converted to an absolute path if necessary via
os.path.abspath(os.path.expanduser(value))
.- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a path string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#
Parses a raw (arbitrary) JSON field.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default value to return if key is not present
- Returns:
the raw (untouched) value of the given field
- Raises:
ConfigError – if no default value was provided and the key was not found in the dictionary
- static parse_string(d, key, default=<eta.core.config.NoDefault object>)#
Parses a string attribute.
- Parameters:
d – a JSON dictionary
key – the key to parse
default – a default string to return if key is not present
- Returns:
a string
- Raises:
ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary
- property run_cls#
The
BaseRun
class associated with this config.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- property type#
The type of run.
- static validate_all_or_nothing_fields(fields)#
Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.
- Parameters:
fields – a dictionary of pre-parsed fields
- Raises:
ConfigError – if some values are truth and some are not
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
- class fiftyone.utils.eval.classification.BinaryEvaluation(config)#
Bases:
ClassificationEvaluation
Binary classification evaluation.
Evaluates the binary classification predictions in the given collection with respect to the specified ground truth labels.
Any missing ground truth or prediction labels are assumed to be examples of the negative class (with zero confidence, for predictions).
If an
eval_key
is specified, this method will record the TP/FP/FN/TN status of each prediction in this field.This method requires that the
(neg_label, pos_label)
label strings for the task are provided via theclasses
argument.- Parameters:
config – a
BinaryEvaluationConfig
Methods:
register_samples
(samples, eval_key)Registers the collection on which evaluation will be performed.
evaluate_samples
(samples[, eval_key, ...])Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
add_fields_to_sidebar_group
(samples, eval_key)cleanup
(samples, eval_key)Cleans up the results of the run with the given key from the collection.
cleanup_custom_metrics
(samples, eval_key[, ...])compute_custom_metrics
(samples, eval_key, ...)delete_run
(samples, key[, cleanup])Deletes the results associated with the given run key from the collection.
delete_runs
(samples[, cleanup])Deletes all runs from the collection.
Ensures that any necessary packages to execute this run are installed.
Ensures that any necessary packages to use existing results for this run are installed.
from_config
(config)Instantiates a Configurable class from a <cls>Config instance.
from_dict
(d)Instantiates a Configurable class from a <cls>Config dict.
from_json
(json_path)Instantiates a Configurable class from a <cls>Config JSON file.
from_kwargs
(**kwargs)Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
get_custom_metric_fields
(samples, eval_key)get_fields
(samples, eval_key[, ...])Gets the fields that were involved in the given run.
get_run_info
(samples, key)Gets the
BaseRunInfo
for the given key on the collection.has_cached_run_results
(samples, key)Determines whether
BaseRunResults
for the given key are cached on the collection.list_runs
(samples[, type, method])Returns the list of run keys on the given collection.
load_run_results
(samples, key[, cache, ...])Loads the
BaseRunResults
for the given key on the collection.load_run_view
(samples, key[, select_fields])Loads the view on which the specified run was performed.
parse
(class_name[, module_name])Parses a Configurable subclass name string.
register_run
(samples, key[, overwrite, cleanup])Registers a run of this method under the given key on the given collection.
rename
(samples, eval_key, new_eval_key)Performs any necessary operations required to rename this run's key.
rename_custom_metrics
(samples, eval_key, ...)The
BaseRunInfo
class associated with this class.save_run_info
(samples, run_info[, ...])Saves the run information on the collection.
save_run_results
(samples, key, run_results)Saves the run results on the collection.
update_run_config
(samples, key, config)Updates the
BaseRunConfig
for the given run on the collection.update_run_key
(samples, key, new_key)Replaces the key for the given run with a new key.
validate
(config)Validates that the given config is an instance of <cls>Config.
validate_run
(samples, key[, overwrite])Validates that the collection can accept this run.
- register_samples(samples, eval_key)#
Registers the collection on which evaluation will be performed.
This method will be called before calling
evaluate_samples()
. Subclasses can extend this method to perform any setup required for an evaluation run.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key – the evaluation key for this evaluation
- evaluate_samples(samples, eval_key=None, classes=None, missing=None, progress=None)#
Evaluates the predicted classifications in the given samples with respect to the specified ground truth labels.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
eval_key (None) – an evaluation key for this evaluation
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used for results purposes
missing (None) – a missing label string. Any None-valued labels are given this label for results purposes
progress (None) – whether to render a progress bar (True/False), use the default value
fiftyone.config.show_progress_bars
(None), or a progress callback function to invoke instead
- Returns:
a
ClassificationResults
instance
- add_fields_to_sidebar_group(samples, eval_key, omit_fields=None)#
- cleanup(samples, eval_key)#
Cleans up the results of the run with the given key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- cleanup_custom_metrics(samples, eval_key, metric_uris=None)#
- compute_custom_metrics(samples, eval_key, results, metric_uris=None)#
- classmethod delete_run(samples, key, cleanup=True)#
Deletes the results associated with the given run key from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
method
- classmethod delete_runs(samples, cleanup=True)#
Deletes all runs from the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
cleanup (True) – whether to execute the run’s
BaseRun.cleanup()
methods
- ensure_requirements()#
Ensures that any necessary packages to execute this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- ensure_usage_requirements()#
Ensures that any necessary packages to use existing results for this run are installed.
Runs should respect
fiftyone.config.requirement_error_level
when handling errors.
- classmethod from_config(config)#
Instantiates a Configurable class from a <cls>Config instance.
- classmethod from_dict(d)#
Instantiates a Configurable class from a <cls>Config dict.
- Parameters:
d – a dict to construct a <cls>Config
- Returns:
an instance of cls
- classmethod from_json(json_path)#
Instantiates a Configurable class from a <cls>Config JSON file.
- Parameters:
json_path – path to a JSON file for type <cls>Config
- Returns:
an instance of cls
- classmethod from_kwargs(**kwargs)#
Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.
- Parameters:
**kwargs – keyword arguments that define the fields of a <cls>Config dict
- Returns:
an instance of cls
- get_custom_metric_fields(samples, eval_key, metric_uris=None)#
- get_fields(samples, eval_key, include_custom_metrics=True)#
Gets the fields that were involved in the given run.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a list of fields
- classmethod get_run_info(samples, key)#
Gets the
BaseRunInfo
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
a
BaseRunInfo
- classmethod has_cached_run_results(samples, key)#
Determines whether
BaseRunResults
for the given key are cached on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
- Returns:
True/False
- classmethod list_runs(samples, type=None, method=None, **kwargs)#
Returns the list of run keys on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
type (None) –
a specific run type to match, which can be:
a
fiftyone.core.runs.BaseRun
class or its fully-qualified class name string
method (None) – a specific
fiftyone.core.runs.BaseRunConfig.method
string to match**kwargs – optional config parameters to match
- Returns:
a list of run keys
- classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#
Loads the
BaseRunResults
for the given key on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
cache (True) – whether to cache the results on the collection
load_view (True) – whether to load the run view in the results (True) or the full dataset (False)
**kwargs – keyword arguments for the run’s
BaseRunConfig.load_credentials()
method
- Returns:
a
BaseRunResults
, or None if the run did not save results
- classmethod load_run_view(samples, key, select_fields=False)#
Loads the view on which the specified run was performed.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
select_fields (False) – whether to exclude fields involved in other runs of the same type
- Returns:
- static parse(class_name, module_name=None)#
Parses a Configurable subclass name string.
Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.
- Parameters:
class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”
module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module
- Returns:
the Configurable class config_cls: the Config class associated with cls
- Return type:
cls
- register_run(samples, key, overwrite=True, cleanup=True)#
Registers a run of this method under the given key on the given collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- rename(samples, eval_key, new_eval_key)#
Performs any necessary operations required to rename this run’s key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- rename_custom_metrics(samples, eval_key, new_eval_key, metric_uris=None)#
- classmethod run_info_cls()#
The
BaseRunInfo
class associated with this class.
- classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#
Saves the run information on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
run_info – a
BaseRunInfo
overwrite (True) – whether to overwrite an existing run with the same key
cleanup (True) – whether to execute an existing run’s
BaseRun.cleanup()
method when overwriting it
- classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#
Saves the run results on the collection.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
run_results – a
BaseRunResults
, or Noneoverwrite (True) – whether to overwrite an existing result with the same key
cache (True) – whether to cache the results on the collection
- classmethod update_run_config(samples, key, config)#
Updates the
BaseRunConfig
for the given run on the collection.- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
config – a
BaseRunConfig
- classmethod update_run_key(samples, key, new_key)#
Replaces the key for the given run with a new key.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
new_key – a new run key
- classmethod validate(config)#
Validates that the given config is an instance of <cls>Config.
- Raises:
ConfigurableError – if config is not an instance of <cls>Config
- validate_run(samples, key, overwrite=True)#
Validates that the collection can accept this run.
The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.
- Parameters:
samples – a
fiftyone.core.collections.SampleCollection
key – a run key
overwrite (True) – whether to allow overwriting an existing run of the same type
- Raises:
ValueError – if the run is invalid
- class fiftyone.utils.eval.classification.ClassificationResults(samples, config, eval_key, ytrue, ypred, confs=None, weights=None, ytrue_ids=None, ypred_ids=None, classes=None, missing=None, custom_metrics=None, backend=None)#
Bases:
BaseClassificationResults
Class that stores the results of a classification evaluation.
- Parameters:
samples – the
fiftyone.core.collections.SampleCollection
usedconfig – the
ClassificationEvaluationConfig
usedeval_key – the evaluation key
ytrue – a list of ground truth labels
ypred – a list of predicted labels
confs (None) – an optional list of confidences for the predictions
weights (None) – an optional list of sample weights
ytrue_ids (None) – a list of IDs for the ground truth labels
ypred_ids (None) – a list of IDs for the predicted labels
classes (None) – the list of possible classes. If not provided, the observed ground truth/predicted labels are used
missing (None) – a missing label string. Any None-valued labels are given this label for evaluation purposes
custom_metrics (None) – an optional dict of custom metrics
backend (None) – a
ClassificationEvaluation
backend
Methods:
add_custom_metrics
(custom_metrics[, overwrite])Computes the given custom metrics and adds them to these results.
Returns the list of class attributes that will be serialized by
serialize()
.base_results_cls
(type)Returns the results class for the given run type.
Clears the subset set by
use_subset()
, if any.confusion_matrix
([classes, include_other, ...])Generates a confusion matrix for the results via
sklearn.metrics.confusion_matrix()
.copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
from_dict
(d, samples, config, key)Builds a
BaseRunResults
from a JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
metrics
([classes, average, beta])Computes classification metrics for the results, including accuracy, precision, recall, and F-beta score.
plot_confusion_matrix
([classes, ...])Plots a confusion matrix for the evaluation results.
print_metrics
([classes, average, beta, digits])Prints the metrics computed via
metrics()
.print_report
([classes, digits])Prints a classification report for the results via
sklearn.metrics.classification_report()
.report
([classes])Generates a classification report for the results via
sklearn.metrics.classification_report()
.save
()Saves the results to the database.
Saves these results config to the database.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
use_subset
(subset_def)Restricts the evaluation results to the specified subset.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
Attributes:
The
BaseRun
for these results.The fully-qualified name of this
BaseRunResults
class.The
BaseRunConfig
for these results.Whether these results are currently restricted to a subset via
use_subset()
.The run key for these results.
The
fiftyone.core.collections.SampleCollection
associated with these results.- add_custom_metrics(custom_metrics, overwrite=True)#
Computes the given custom metrics and adds them to these results.
- Parameters:
custom_metrics – a list of custom metrics to compute or a dict mapping metric names to kwargs dicts
overwrite (True) – whether to recompute any custom metrics that have already been applied
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- property backend#
The
BaseRun
for these results.
- static base_results_cls(type)#
Returns the results class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunResults
subclass
- clear_subset()#
Clears the subset set by
use_subset()
, if any.Subsequent operations will be performed on the full results.
- property cls#
The fully-qualified name of this
BaseRunResults
class.
- property config#
The
BaseRunConfig
for these results.
- confusion_matrix(classes=None, include_other=False, include_missing=False)#
Generates a confusion matrix for the results via
sklearn.metrics.confusion_matrix()
.The rows of the confusion matrix represent ground truth and the columns represent predictions.
- Parameters:
classes (None) – an optional list of classes to include in the confusion matrix
include_other (False) – whether to include an extra row/column at the end of the matrix for labels that do not appear in
classes
. Only applicable ifclasses
are providedinclude_missing (False) – whether to include a row/column at the end of the matrix for unmatched labels. Only applicable if
self.missing
does not already appear inclasses
. If both “other” and “missing” rows/columns are requested, this one is last
- Returns:
a
num_classes x num_classes
confusion matrix
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod from_dict(d, samples, config, key)#
Builds a
BaseRunResults
from a JSON dict representation of it.- Parameters:
d – a JSON dict
samples – the
fiftyone.core.collections.SampleCollection
for the runconfig – the
BaseRunConfig
for the runkey – the run key
- Returns:
a
BaseRunResults
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- property has_subset#
Whether these results are currently restricted to a subset via
use_subset()
.
- property key#
The run key for these results.
- metrics(classes=None, average='micro', beta=1.0)#
Computes classification metrics for the results, including accuracy, precision, recall, and F-beta score.
See
sklearn.metrics.precision_recall_fscore_support()
for details.Also includes any custom metrics from
custom_metrics
.- Parameters:
classes (None) – an optional list of classes to include in the calculations
average ("micro") – the averaging strategy to use
beta (1.0) – the F-beta value to use
- Returns:
a dict
- plot_confusion_matrix(classes=None, include_other=None, include_missing=None, other_label='(other)', backend='plotly', **kwargs)#
Plots a confusion matrix for the evaluation results.
If you are working in a notebook environment with the default plotly backend, this method returns an interactive
fiftyone.core.plots.plotly.InteractiveHeatmap
that you can attach to an App session via itsfiftyone.core.session.Session.plots
attribute, which will automatically sync the session’s view with the currently selected cells in the confusion matrix.- Parameters:
classes (None) – an optional list of classes to include in the confusion matrix
include_other (None) –
whether to include a row/column for examples whose label is in
classes
but are matched to labels that do not appear inclasses
. Only applicable ifclasses
are provided. The supported values are:None (default): only include a row/column for other labels if there are any
True: do include a row/column for other labels
False: do not include a row/column for other labels
include_missing (None) –
whether to include a row/column for missing ground truth/predictions in the confusion matrix. The supported values are:
None (default): only include a row/column for missing labels if there are any
True: do include a row/column for missing labels
False: do not include a row/column for missing labels
other_label ("(other)") – the label to use for “other” predictions
backend ("plotly") – the plotting backend to use. Supported values are
("plotly", "matplotlib")
**kwargs –
keyword arguments for the backend plotting method:
”plotly” backend:
fiftyone.core.plots.plotly.plot_confusion_matrix()
”matplotlib” backend:
fiftyone.core.plots.matplotlib.plot_confusion_matrix()
- Returns:
a
fiftyone.core.plots.plotly.InteractiveHeatmap
, if the plotly backend is useda matplotlib figure, otherwise
- Return type:
one of the following
- print_metrics(classes=None, average='micro', beta=1.0, digits=2)#
Prints the metrics computed via
metrics()
.- Parameters:
classes (None) – an optional list of classes to include in the calculations
average ("micro") – the averaging strategy to use
beta (1.0) – the F-beta value to use
digits (2) – the number of digits of precision to print
- print_report(classes=None, digits=2)#
Prints a classification report for the results via
sklearn.metrics.classification_report()
.- Parameters:
classes (None) – an optional list of classes to include in the report
digits (2) – the number of digits of precision to print
- report(classes=None)#
Generates a classification report for the results via
sklearn.metrics.classification_report()
.- Parameters:
classes (None) – an optional list of classes to include in the report
- Returns:
a dict
- property samples#
The
fiftyone.core.collections.SampleCollection
associated with these results.
- save()#
Saves the results to the database.
- save_config()#
Saves these results config to the database.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- use_subset(subset_def)#
Restricts the evaluation results to the specified subset.
Subsequent calls to supported methods on this instance will only contain results from the specified subset rather than the full results.
Use
clear_subset()
to reset to the full results. Or, equivalently, use the context manager interface as demonstrated below to automatically reset the results when the context exits.Example usage:
import fiftyone as fo import fiftyone.zoo as foz import fiftyone.utils.random as four from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") four.random_split(dataset, {"sunny": 0.7, "cloudy": 0.2, "rainy": 0.1}) results = dataset.evaluate_detections( "predictions", gt_field="ground_truth", eval_key="eval", ) counts = dataset.count_values("ground_truth.detections.label") classes = sorted(counts, key=counts.get, reverse=True)[:5] # Full results results.print_report(classes=classes) # Sunny samples subset_def = dict(type="field", field="tags", value="sunny") with results.use_subset(subset_def): results.print_report(classes=classes) # Small objects bbox_area = F("bounding_box")[2] * F("bounding_box")[3] small_objects = bbox_area <= 0.05 subset_def = dict(type="attribute", expr=small_objects) with results.use_subset(subset_def): results.print_report(classes=classes)
- Parameters:
subset_def –
the subset definition, which can be:
a dict or list of dicts defining the subset. See above for examples and see
get_subset_view()
for full syntaxa
fiftyone.core.view.DatasetView
defining the subset
- Returns:
self
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()
- class fiftyone.utils.eval.classification.BinaryClassificationResults(samples, config, eval_key, ytrue, ypred, confs, classes, weights=None, ytrue_ids=None, ypred_ids=None, custom_metrics=None, backend=None)#
Bases:
ClassificationResults
Class that stores the results of a binary classification evaluation.
Any missing ground truth or prediction labels are assumed to be examples of the negative class (with zero confidence, for predictions).
- Parameters:
samples – the
fiftyone.core.collections.SampleCollection
usedconfig – the
ClassificationEvaluationConfig
usedeval_key – the evaluation key
ytrue – a list of ground truth labels
ypred – a list of predicted labels
confs – a list of confidences for the predictions
classes – the
(neg_label, pos_label)
label strings for the taskweights (None) – an optional list of sample weights
ytrue_ids (None) – a list of IDs for the ground truth labels
ypred_ids (None) – a list of IDs for the predicted labels
custom_metrics (None) – an optional dict of custom metrics
backend (None) – a
ClassificationEvaluation
backend
Methods:
average_precision
([average])Computes the average precision for the results via
sklearn.metrics.average_precision_score()
.plot_pr_curve
([average, backend])Plots a precision-recall (PR) curve for the results.
plot_roc_curve
([backend])Plots a receiver operating characteristic (ROC) curve for the results.
add_custom_metrics
(custom_metrics[, overwrite])Computes the given custom metrics and adds them to these results.
Returns the list of class attributes that will be serialized by
serialize()
.base_results_cls
(type)Returns the results class for the given run type.
Clears the subset set by
use_subset()
, if any.confusion_matrix
([classes, include_other, ...])Generates a confusion matrix for the results via
sklearn.metrics.confusion_matrix()
.copy
()Returns a deep copy of the object.
custom_attributes
([dynamic, private])Returns a customizable list of class attributes.
from_dict
(d, samples, config, key)Builds a
BaseRunResults
from a JSON dict representation of it.from_json
(path, *args, **kwargs)Constructs a Serializable object from a JSON file.
from_str
(s, *args, **kwargs)Constructs a Serializable object from a JSON string.
Returns the fully-qualified class name string of this object.
metrics
([classes, average, beta])Computes classification metrics for the results, including accuracy, precision, recall, and F-beta score.
plot_confusion_matrix
([classes, ...])Plots a confusion matrix for the evaluation results.
print_metrics
([classes, average, beta, digits])Prints the metrics computed via
metrics()
.print_report
([classes, digits])Prints a classification report for the results via
sklearn.metrics.classification_report()
.report
([classes])Generates a classification report for the results via
sklearn.metrics.classification_report()
.save
()Saves the results to the database.
Saves these results config to the database.
serialize
([reflective])Serializes the object into a dictionary.
to_str
([pretty_print])Returns a string representation of this object.
use_subset
(subset_def)Restricts the evaluation results to the specified subset.
write_json
(path[, pretty_print])Serializes the object and writes it to disk.
Attributes:
The
BaseRun
for these results.The fully-qualified name of this
BaseRunResults
class.The
BaseRunConfig
for these results.Whether these results are currently restricted to a subset via
use_subset()
.The run key for these results.
The
fiftyone.core.collections.SampleCollection
associated with these results.- average_precision(average='micro')#
Computes the average precision for the results via
sklearn.metrics.average_precision_score()
.- Parameters:
average ("micro") – the averaging strategy to use
- Returns:
the average precision
- plot_pr_curve(average='micro', backend='plotly', **kwargs)#
Plots a precision-recall (PR) curve for the results.
- Parameters:
average ("micro") – the averaging strategy to use when computing average precision
backend ("plotly") – the plotting backend to use. Supported values are
("plotly", "matplotlib")
**kwargs –
keyword arguments for the backend plotting method:
”plotly” backend:
fiftyone.core.plots.plotly.plot_pr_curve()
”matplotlib” backend:
fiftyone.core.plots.matplotlib.plot_pr_curve()
- Returns:
a
fiftyone.core.plots.plotly.PlotlyNotebookPlot
, if you are working in a notebook context and the plotly backend is useda plotly or matplotlib figure, otherwise
- Return type:
one of the following
- plot_roc_curve(backend='plotly', **kwargs)#
Plots a receiver operating characteristic (ROC) curve for the results.
- Parameters:
backend ("plotly") – the plotting backend to use. Supported values are
("plotly", "matplotlib")
**kwargs –
keyword arguments for the backend plotting method:
”plotly” backend:
fiftyone.core.plots.plotly.plot_roc_curve()
”matplotlib” backend:
fiftyone.core.plots.matplotlib.plot_roc_curve()
- Returns:
a
fiftyone.core.plots.plotly.PlotlyNotebookPlot
, if you are working in a notebook context and the plotly backend is useda plotly or matplotlib figure, otherwise
- Return type:
one of the following
- add_custom_metrics(custom_metrics, overwrite=True)#
Computes the given custom metrics and adds them to these results.
- Parameters:
custom_metrics – a list of custom metrics to compute or a dict mapping metric names to kwargs dicts
overwrite (True) – whether to recompute any custom metrics that have already been applied
- attributes()#
Returns the list of class attributes that will be serialized by
serialize()
.- Returns:
a list of attributes
- property backend#
The
BaseRun
for these results.
- static base_results_cls(type)#
Returns the results class for the given run type.
- Parameters:
type – a
BaseRunConfig.type
- Returns:
a
BaseRunResults
subclass
- clear_subset()#
Clears the subset set by
use_subset()
, if any.Subsequent operations will be performed on the full results.
- property cls#
The fully-qualified name of this
BaseRunResults
class.
- property config#
The
BaseRunConfig
for these results.
- confusion_matrix(classes=None, include_other=False, include_missing=False)#
Generates a confusion matrix for the results via
sklearn.metrics.confusion_matrix()
.The rows of the confusion matrix represent ground truth and the columns represent predictions.
- Parameters:
classes (None) – an optional list of classes to include in the confusion matrix
include_other (False) – whether to include an extra row/column at the end of the matrix for labels that do not appear in
classes
. Only applicable ifclasses
are providedinclude_missing (False) – whether to include a row/column at the end of the matrix for unmatched labels. Only applicable if
self.missing
does not already appear inclasses
. If both “other” and “missing” rows/columns are requested, this one is last
- Returns:
a
num_classes x num_classes
confusion matrix
- copy()#
Returns a deep copy of the object.
- Returns:
a Serializable instance
- custom_attributes(dynamic=False, private=False)#
Returns a customizable list of class attributes.
By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).
- Parameters:
dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False
private – whether to include private properties, i.e., those starting with “_”. By default, this is False
- Returns:
a list of class attributes
- classmethod from_dict(d, samples, config, key)#
Builds a
BaseRunResults
from a JSON dict representation of it.- Parameters:
d – a JSON dict
samples – the
fiftyone.core.collections.SampleCollection
for the runconfig – the
BaseRunConfig
for the runkey – the run key
- Returns:
a
BaseRunResults
- classmethod from_json(path, *args, **kwargs)#
Constructs a Serializable object from a JSON file.
Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.
- Parameters:
path – the path to the JSON file on disk
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod from_str(s, *args, **kwargs)#
Constructs a Serializable object from a JSON string.
Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.
- Parameters:
s – a JSON string representation of a Serializable object
*args – optional positional arguments for self.from_dict()
**kwargs – optional keyword arguments for self.from_dict()
- Returns:
an instance of the Serializable class
- classmethod get_class_name()#
Returns the fully-qualified class name string of this object.
- property has_subset#
Whether these results are currently restricted to a subset via
use_subset()
.
- property key#
The run key for these results.
- metrics(classes=None, average='micro', beta=1.0)#
Computes classification metrics for the results, including accuracy, precision, recall, and F-beta score.
See
sklearn.metrics.precision_recall_fscore_support()
for details.Also includes any custom metrics from
custom_metrics
.- Parameters:
classes (None) – an optional list of classes to include in the calculations
average ("micro") – the averaging strategy to use
beta (1.0) – the F-beta value to use
- Returns:
a dict
- plot_confusion_matrix(classes=None, include_other=None, include_missing=None, other_label='(other)', backend='plotly', **kwargs)#
Plots a confusion matrix for the evaluation results.
If you are working in a notebook environment with the default plotly backend, this method returns an interactive
fiftyone.core.plots.plotly.InteractiveHeatmap
that you can attach to an App session via itsfiftyone.core.session.Session.plots
attribute, which will automatically sync the session’s view with the currently selected cells in the confusion matrix.- Parameters:
classes (None) – an optional list of classes to include in the confusion matrix
include_other (None) –
whether to include a row/column for examples whose label is in
classes
but are matched to labels that do not appear inclasses
. Only applicable ifclasses
are provided. The supported values are:None (default): only include a row/column for other labels if there are any
True: do include a row/column for other labels
False: do not include a row/column for other labels
include_missing (None) –
whether to include a row/column for missing ground truth/predictions in the confusion matrix. The supported values are:
None (default): only include a row/column for missing labels if there are any
True: do include a row/column for missing labels
False: do not include a row/column for missing labels
other_label ("(other)") – the label to use for “other” predictions
backend ("plotly") – the plotting backend to use. Supported values are
("plotly", "matplotlib")
**kwargs –
keyword arguments for the backend plotting method:
”plotly” backend:
fiftyone.core.plots.plotly.plot_confusion_matrix()
”matplotlib” backend:
fiftyone.core.plots.matplotlib.plot_confusion_matrix()
- Returns:
a
fiftyone.core.plots.plotly.InteractiveHeatmap
, if the plotly backend is useda matplotlib figure, otherwise
- Return type:
one of the following
- print_metrics(classes=None, average='micro', beta=1.0, digits=2)#
Prints the metrics computed via
metrics()
.- Parameters:
classes (None) – an optional list of classes to include in the calculations
average ("micro") – the averaging strategy to use
beta (1.0) – the F-beta value to use
digits (2) – the number of digits of precision to print
- print_report(classes=None, digits=2)#
Prints a classification report for the results via
sklearn.metrics.classification_report()
.- Parameters:
classes (None) – an optional list of classes to include in the report
digits (2) – the number of digits of precision to print
- report(classes=None)#
Generates a classification report for the results via
sklearn.metrics.classification_report()
.- Parameters:
classes (None) – an optional list of classes to include in the report
- Returns:
a dict
- property samples#
The
fiftyone.core.collections.SampleCollection
associated with these results.
- save()#
Saves the results to the database.
- save_config()#
Saves these results config to the database.
- serialize(reflective=False)#
Serializes the object into a dictionary.
Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.
- Parameters:
reflective – whether to include reflective attributes when serializing the object. By default, this is False
- Returns:
a JSON dictionary representation of the object
- to_str(pretty_print=True, **kwargs)#
Returns a string representation of this object.
- Parameters:
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True
**kwargs – optional keyword arguments for self.serialize()
- Returns:
a string representation of the object
- use_subset(subset_def)#
Restricts the evaluation results to the specified subset.
Subsequent calls to supported methods on this instance will only contain results from the specified subset rather than the full results.
Use
clear_subset()
to reset to the full results. Or, equivalently, use the context manager interface as demonstrated below to automatically reset the results when the context exits.Example usage:
import fiftyone as fo import fiftyone.zoo as foz import fiftyone.utils.random as four from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") four.random_split(dataset, {"sunny": 0.7, "cloudy": 0.2, "rainy": 0.1}) results = dataset.evaluate_detections( "predictions", gt_field="ground_truth", eval_key="eval", ) counts = dataset.count_values("ground_truth.detections.label") classes = sorted(counts, key=counts.get, reverse=True)[:5] # Full results results.print_report(classes=classes) # Sunny samples subset_def = dict(type="field", field="tags", value="sunny") with results.use_subset(subset_def): results.print_report(classes=classes) # Small objects bbox_area = F("bounding_box")[2] * F("bounding_box")[3] small_objects = bbox_area <= 0.05 subset_def = dict(type="attribute", expr=small_objects) with results.use_subset(subset_def): results.print_report(classes=classes)
- Parameters:
subset_def –
the subset definition, which can be:
a dict or list of dicts defining the subset. See above for examples and see
get_subset_view()
for full syntaxa
fiftyone.core.view.DatasetView
defining the subset
- Returns:
self
- write_json(path, pretty_print=False, **kwargs)#
Serializes the object and writes it to disk.
- Parameters:
path – the output path
pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False
**kwargs – optional keyword arguments for self.serialize()