fiftyone.brain.visualization#

Visualization interface.

Copyright 2017-2025, Voxel51, Inc.

Functions:

compute_visualization(samples, ...)

See fiftyone/brain/__init__.py.

values(results, path_or_expr)

visualize(results[, labels, sizes, classes, ...])

Classes:

VisualizationResults(samples, config, ...[, ...])

Class storing the results of fiftyone.brain.compute_visualization().

VisualizationConfig([embeddings_field, ...])

Base class for configuring visualization methods.

Visualization(config)

UMAPVisualizationConfig([embeddings_field, ...])

Configuration for Uniform Manifold Approximation and Projection (UMAP) embedding visualization.

UMAPVisualization(config)

TSNEVisualizationConfig([embeddings_field, ...])

Configuration for t-distributed Stochastic Neighbor Embedding (t-SNE) visualization.

TSNEVisualization(config)

PCAVisualizationConfig([embeddings_field, ...])

Configuration for principal component analysis (PCA) embedding visualization.

PCAVisualization(config)

ManualVisualizationConfig([patches_field, ...])

Configuration for manually-provided low-dimensional visualizations.

ManualVisualization(config)

fiftyone.brain.visualization.compute_visualization(samples, patches_field, embeddings, points, create_index, points_field, brain_key, num_dims, method, similarity_index, model, model_kwargs, force_square, alpha, batch_size, num_workers, skip_failures, progress, **kwargs)#

See fiftyone/brain/__init__.py.

fiftyone.brain.visualization.values(results, path_or_expr)#
fiftyone.brain.visualization.visualize(results, labels=None, sizes=None, classes=None, backend='plotly', **kwargs)#
class fiftyone.brain.visualization.VisualizationResults(samples, config, brain_key, points, sample_ids=None, label_ids=None, backend=None)#

Bases: BrainResults

Class storing the results of fiftyone.brain.compute_visualization().

Parameters:

Attributes:

config

The VisualizationConfig for the results.

index_size

The number of active points in the index.

total_index_size

The total number of data points in the index.

missing_size

The total number of data points in view() that are missing from this index.

current_points

The currently active points in the index.

current_sample_ids

The sample IDs of the currently active points in the index.

current_label_ids

The label IDs of the currently active points in the index, or None if not applicable.

view

The fiftyone.core.collections.SampleCollection against which results are currently being generated.

has_spatial_index

Whether these results have a spatial index.

backend

The BaseRun for these results.

cls

The fully-qualified name of this BaseRunResults class.

key

The run key for these results.

samples

The fiftyone.core.collections.SampleCollection associated with these results.

Methods:

use_view(sample_collection[, allow_missing, ...])

Restricts the index to the provided view.

clear_view()

Clears the view set by use_view(), if any.

values(path_or_expr)

Extracts a flat list of values from the given field or expression corresponding to the current view().

visualize([labels, sizes, classes, backend])

Generates an interactive scatterplot of the visualization results for the current view().

index_points([points_field, create_index, ...])

Adds a spatial index for these visualization results to its dataset's samples.

remove_index()

Removes the spatial index from these visualization results, if one exists.

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_results_cls(type)

Returns the results class for the given run type.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

from_dict(d, samples, config, key)

Builds a BaseRunResults from a JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

save()

Saves the results to the database.

save_config()

Saves these results config to the database.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property config#

The VisualizationConfig for the results.

property index_size#

The number of active points in the index.

If use_view() has been called to restrict the index, this property will reflect the size of the active index.

property total_index_size#

The total number of data points in the index.

If use_view() has been called to restrict the index, this value may be larger than the current index_size().

property missing_size#

The total number of data points in view() that are missing from this index.

This property is only applicable when use_view() has been called, and it will be None if no data points are missing.

property current_points#

The currently active points in the index.

If use_view() has been called, this may be a subset of the full index.

property current_sample_ids#

The sample IDs of the currently active points in the index.

If use_view() has been called, this may be a subset of the full index.

property current_label_ids#

The label IDs of the currently active points in the index, or None if not applicable.

If use_view() has been called, this may be a subset of the full index.

property view#

The fiftyone.core.collections.SampleCollection against which results are currently being generated.

If use_view() has been called, this view may be different than the collection on which the full index was generated.

property has_spatial_index#

Whether these results have a spatial index.

Use index_points() to add a spatial index to an existing set of visualization results.

use_view(sample_collection, allow_missing=True, warn_missing=False)#

Restricts the index to the provided view.

Subsequent calls to methods on this instance will only contain results from the specified view rather than the full index.

Use clear_view() to reset to the full index. Or, equivalently, use the context manager interface as demonstrated below to automatically reset the view when the context exits.

Example usage:

import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz

dataset = foz.load_zoo_dataset("quickstart")

results = fob.compute_visualization(dataset)
print(results.index_size)  # 200

view = dataset.take(50)

with results.use_view(view):
    print(results.index_size)  # 50

    plot = results.visualize()
    plot.show()
Parameters:
  • sample_collection – a fiftyone.core.collections.SampleCollection

  • allow_missing (True) – whether to allow the provided collection to contain data points that this index does not contain (True) or whether to raise an error in this case (False)

  • warn_missing (False) – whether to log a warning if the provided collection contains data points that this index does not contain

Returns:

self

clear_view()#

Clears the view set by use_view(), if any.

Subsequent operations will be performed on the full index.

values(path_or_expr)#

Extracts a flat list of values from the given field or expression corresponding to the current view().

This method always returns values in the same order as current_points(), current_sample_ids(), and current_label_ids().

Parameters:

path_or_expr

the values to extract, which can be:

Returns:

a list of values

visualize(labels=None, sizes=None, classes=None, backend='plotly', **kwargs)#

Generates an interactive scatterplot of the visualization results for the current view().

This method supports 2D or 3D visualizations, but interactive point selection is only available in 2D.

You can use the labels parameters to define a coloring for the points, and you can use the sizes parameter to scale the sizes of the points.

You can attach plots generated by this method to an App session via its fiftyone.core.session.Session.plots attribute, which will automatically sync the session’s view with the currently selected points in the plot.

Parameters:
Returns:

an fiftyone.core.plots.base.InteractivePlot

index_points(points_field=None, create_index=True, progress=None)#

Adds a spatial index for these visualization results to its dataset’s samples.

This method is useful if you want to add a spatial index to existing visualization results that don’t yet have one.

Spatial indexes are highly recommended for large datasets as they enable efficient querying when lassoing points in embeddings plots.

Parameters:
  • points_field (None) – an optional field name in which to store the spatial index. The default is the result’s brain_key

  • create_index (True) – whether to create a database index for the points

  • progress (None) – whether to render a progress bar (True/False), use the default value fiftyone.config.show_progress_bars (None), or a progress callback function to invoke instead

remove_index()#

Removes the spatial index from these visualization results, if one exists.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

property backend#

The BaseRun for these results.

static base_results_cls(type)#

Returns the results class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunResults subclass

property cls#

The fully-qualified name of this BaseRunResults class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod from_dict(d, samples, config, key)#

Builds a BaseRunResults from a JSON dict representation of it.

Parameters:
Returns:

a BaseRunResults

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

property key#

The run key for these results.

property samples#

The fiftyone.core.collections.SampleCollection associated with these results.

save()#

Saves the results to the database.

save_config()#

Saves these results config to the database.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.VisualizationConfig(embeddings_field=None, points_field=None, similarity_index=None, model=None, model_kwargs=None, patches_field=None, num_dims=2, **kwargs)#

Bases: BrainMethodConfig

Base class for configuring visualization methods.

Parameters:
  • embeddings_field (None) – the sample field containing the embeddings, if one was provided

  • points_field (None) – the name of a field in which to store the visualization points, if requested

  • similarity_index (None) – the similarity index containing the embeddings, if one was provided

  • model (None) – the fiftyone.core.models.Model or name of the zoo model that was used to compute embeddings, if known

  • model_kwargs (None) – a dictionary of optional keyword arguments to pass to the model’s Config when a model name is provided

  • patches_field (None) – the sample field defining the patches being analyzed, if any

  • num_dims (2) – the dimension of the visualization space

Attributes:

type

The type of run.

cls

The fully-qualified name of this BaseRunConfig class.

method

The name of the method.

run_cls

The BaseRun class associated with this config.

Methods:

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_config_cls(type)

Returns the config class for the given run type.

build()

Builds the BaseRun instance associated with this config.

builder()

Returns a ConfigBuilder instance for this class.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

default()

Returns the default config instance.

from_dict(d)

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_kwargs(**kwargs)

Constructs a Config object from keyword arguments.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

load_default()

Loads the default config instance from file.

parse_array(d, key[, default])

Parses a raw array attribute.

parse_bool(d, key[, default])

Parses a boolean value.

parse_categorical(d, key, choices[, default])

Parses a categorical JSON field, which must take a value from among the given choices.

parse_dict(d, key[, default])

Parses a dictionary attribute.

parse_int(d, key[, default])

Parses an integer attribute.

parse_mutually_exclusive_fields(fields)

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

parse_number(d, key[, default])

Parses a number attribute.

parse_object(d, key, cls[, default])

Parses an object attribute.

parse_object_array(d, key, cls[, default])

Parses an array of objects.

parse_object_dict(d, key, cls[, default])

Parses a dictionary whose values are objects.

parse_path(d, key[, default])

Parses a path attribute.

parse_raw(d, key[, default])

Parses a raw (arbitrary) JSON field.

parse_string(d, key[, default])

Parses a string attribute.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

validate_all_or_nothing_fields(fields)

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property type#

The type of run.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

static base_config_cls(type)#

Returns the config class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunConfig subclass

build()#

Builds the BaseRun instance associated with this config.

Returns:

a BaseRun instance

classmethod builder()#

Returns a ConfigBuilder instance for this class.

property cls#

The fully-qualified name of this BaseRunConfig class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod default()#

Returns the default config instance.

By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.

classmethod from_dict(d)#

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

Parameters:

d – a JSON dict

Returns:

a BaseRunConfig

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_kwargs(**kwargs)#

Constructs a Config object from keyword arguments.

Parameters:

**kwargs – keyword arguments that define the fields expected by cls

Returns:

an instance of cls

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)#

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

Parameters:

**kwargs – subclass-specific credentials

classmethod load_default()#

Loads the default config instance from file.

Subclasses must implement this method if they intend to support default instances.

property method#

The name of the method.

static parse_array(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw array attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default list to return if key is not present

Returns:

a list of raw (untouched) values

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#

Parses a boolean value.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default bool to return if key is not present

Returns:

True/False

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#

Parses a categorical JSON field, which must take a value from among the given choices.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • choices – either an iterable of possible values or an enum-like class whose attributes define the possible values

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field, which is equal to a value from choices

Raises:

ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary

static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#

Parses a dictionary attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default dict to return if key is not present

Returns:

a dictionary

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_int(d, key, default=<eta.core.config.NoDefault object>)#

Parses an integer attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default integer value to return if key is not present

Returns:

an int

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_mutually_exclusive_fields(fields)#

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Returns:

the (field, value) that was set

Raises:

ConfigError – if zero or more than one truthy value was found

static parse_number(d, key, default=<eta.core.config.NoDefault object>)#

Parses a number attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default numeric value to return if key is not present

Returns:

a number (e.g. int, float)

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an object attribute.

The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of d[key]

  • default – a default cls instance to return if key is not present

Returns:

an instance of cls

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an array of objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the elements of list d[key]

  • default – the default list to return if key is not present

Returns:

a list of cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses a dictionary whose values are objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the values of dictionary d[key]

  • default – the default dict of cls instances to return if key is not present

Returns:

a dictionary whose values are cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_path(d, key, default=<eta.core.config.NoDefault object>)#

Parses a path attribute.

The path is converted to an absolute path if necessary via os.path.abspath(os.path.expanduser(value)).

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a path string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw (arbitrary) JSON field.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field

Raises:

ConfigError – if no default value was provided and the key was not found in the dictionary

static parse_string(d, key, default=<eta.core.config.NoDefault object>)#

Parses a string attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

property run_cls#

The BaseRun class associated with this config.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

static validate_all_or_nothing_fields(fields)#

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Raises:

ConfigError – if some values are truth and some are not

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.Visualization(config)#

Bases: BrainMethod

Methods:

fit(embeddings)

get_fields(samples, brain_key)

Gets the fields that were involved in the given run.

rename(samples, key, new_key)

Performs any necessary operations required to rename this run's key.

cleanup(samples, key)

Cleans up the results of the run with the given key from the collection.

delete_run(samples, key[, cleanup])

Deletes the results associated with the given run key from the collection.

delete_runs(samples[, cleanup])

Deletes all runs from the collection.

ensure_requirements()

Ensures that any necessary packages to execute this run are installed.

ensure_usage_requirements()

Ensures that any necessary packages to use existing results for this run are installed.

from_config(config)

Instantiates a Configurable class from a <cls>Config instance.

from_dict(d)

Instantiates a Configurable class from a <cls>Config dict.

from_json(json_path)

Instantiates a Configurable class from a <cls>Config JSON file.

from_kwargs(**kwargs)

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

get_run_info(samples, key)

Gets the BaseRunInfo for the given key on the collection.

has_cached_run_results(samples, key)

Determines whether BaseRunResults for the given key are cached on the collection.

list_runs(samples[, type, method])

Returns the list of run keys on the given collection.

load_run_results(samples, key[, cache, ...])

Loads the BaseRunResults for the given key on the collection.

load_run_view(samples, key[, select_fields])

Loads the view on which the specified run was performed.

parse(class_name[, module_name])

Parses a Configurable subclass name string.

register_run(samples, key[, overwrite, cleanup])

Registers a run of this method under the given key on the given collection.

run_info_cls()

The BaseRunInfo class associated with this class.

save_run_info(samples, run_info[, ...])

Saves the run information on the collection.

save_run_results(samples, key, run_results)

Saves the run results on the collection.

update_run_config(samples, key, config)

Updates the BaseRunConfig for the given run on the collection.

update_run_key(samples, key, new_key)

Replaces the key for the given run with a new key.

validate(config)

Validates that the given config is an instance of <cls>Config.

validate_run(samples, key[, overwrite])

Validates that the collection can accept this run.

fit(embeddings)#
get_fields(samples, brain_key)#

Gets the fields that were involved in the given run.

Parameters:
Returns:

a list of fields

rename(samples, key, new_key)#

Performs any necessary operations required to rename this run’s key.

Parameters:
cleanup(samples, key)#

Cleans up the results of the run with the given key from the collection.

Parameters:
classmethod delete_run(samples, key, cleanup=True)#

Deletes the results associated with the given run key from the collection.

Parameters:
classmethod delete_runs(samples, cleanup=True)#

Deletes all runs from the collection.

Parameters:
ensure_requirements()#

Ensures that any necessary packages to execute this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

ensure_usage_requirements()#

Ensures that any necessary packages to use existing results for this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

classmethod from_config(config)#

Instantiates a Configurable class from a <cls>Config instance.

classmethod from_dict(d)#

Instantiates a Configurable class from a <cls>Config dict.

Parameters:

d – a dict to construct a <cls>Config

Returns:

an instance of cls

classmethod from_json(json_path)#

Instantiates a Configurable class from a <cls>Config JSON file.

Parameters:

json_path – path to a JSON file for type <cls>Config

Returns:

an instance of cls

classmethod from_kwargs(**kwargs)#

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

Parameters:

**kwargs – keyword arguments that define the fields of a <cls>Config dict

Returns:

an instance of cls

classmethod get_run_info(samples, key)#

Gets the BaseRunInfo for the given key on the collection.

Parameters:
Returns:

a BaseRunInfo

classmethod has_cached_run_results(samples, key)#

Determines whether BaseRunResults for the given key are cached on the collection.

Parameters:
Returns:

True/False

classmethod list_runs(samples, type=None, method=None, **kwargs)#

Returns the list of run keys on the given collection.

Parameters:
Returns:

a list of run keys

classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#

Loads the BaseRunResults for the given key on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • cache (True) – whether to cache the results on the collection

  • load_view (True) – whether to load the run view in the results (True) or the full dataset (False)

  • **kwargs – keyword arguments for the run’s BaseRunConfig.load_credentials() method

Returns:

a BaseRunResults, or None if the run did not save results

classmethod load_run_view(samples, key, select_fields=False)#

Loads the view on which the specified run was performed.

Parameters:
Returns:

a fiftyone.core.collections.SampleCollection

static parse(class_name, module_name=None)#

Parses a Configurable subclass name string.

Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.

Parameters:
  • class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”

  • module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module

Returns:

the Configurable class config_cls: the Config class associated with cls

Return type:

cls

register_run(samples, key, overwrite=True, cleanup=True)#

Registers a run of this method under the given key on the given collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • overwrite (True) – whether to allow overwriting an existing run of the same type

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod run_info_cls()#

The BaseRunInfo class associated with this class.

classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#

Saves the run information on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • run_info – a BaseRunInfo

  • overwrite (True) – whether to overwrite an existing run with the same key

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#

Saves the run results on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • run_results – a BaseRunResults, or None

  • overwrite (True) – whether to overwrite an existing result with the same key

  • cache (True) – whether to cache the results on the collection

classmethod update_run_config(samples, key, config)#

Updates the BaseRunConfig for the given run on the collection.

Parameters:
classmethod update_run_key(samples, key, new_key)#

Replaces the key for the given run with a new key.

Parameters:
classmethod validate(config)#

Validates that the given config is an instance of <cls>Config.

Raises:

ConfigurableError – if config is not an instance of <cls>Config

validate_run(samples, key, overwrite=True)#

Validates that the collection can accept this run.

The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.

Parameters:
Raises:

ValueError – if the run is invalid

class fiftyone.brain.visualization.UMAPVisualizationConfig(embeddings_field=None, points_field=None, similarity_index=None, model=None, model_kwargs=None, patches_field=None, num_dims=2, num_neighbors=15, metric='euclidean', min_dist=0.1, seed=None, verbose=True, **kwargs)#

Bases: VisualizationConfig

Configuration for Uniform Manifold Approximation and Projection (UMAP) embedding visualization.

See lmcinnes/umap for more information about the supported parameters.

Parameters:
  • embeddings_field (None) – the sample field containing the embeddings, if one was provided

  • points_field (None) – the name of a field in which to store the visualization points, if requested

  • similarity_index (None) – the similarity index containing the embeddings, if one was provided

  • model (None) – the fiftyone.core.models.Model or name of the zoo model that was used to compute embeddings, if known

  • model_kwargs (None) – a dictionary of optional keyword arguments to pass to the model’s Config when a model name is provided

  • patches_field (None) – the sample field defining the patches being analyzed, if any

  • num_dims (2) – the dimension of the visualization space

  • num_neighbors (15) – the number of neighboring points used in local approximations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. Typical values are in [5, 50]

  • metric ("euclidean") – the metric to use when calculating distance between embeddings. See the UMAP documentation for supported values

  • min_dist (0.1) – the effective minimum distance between embedded points. This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimise more accurately with regard to local structure. Typical values are in [0.001, 0.5]

  • seed (None) – a random seed

  • verbose (True) – whether to log progress

Attributes:

method

The name of the method.

cls

The fully-qualified name of this BaseRunConfig class.

run_cls

The BaseRun class associated with this config.

type

The type of run.

Methods:

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_config_cls(type)

Returns the config class for the given run type.

build()

Builds the BaseRun instance associated with this config.

builder()

Returns a ConfigBuilder instance for this class.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

default()

Returns the default config instance.

from_dict(d)

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_kwargs(**kwargs)

Constructs a Config object from keyword arguments.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

load_default()

Loads the default config instance from file.

parse_array(d, key[, default])

Parses a raw array attribute.

parse_bool(d, key[, default])

Parses a boolean value.

parse_categorical(d, key, choices[, default])

Parses a categorical JSON field, which must take a value from among the given choices.

parse_dict(d, key[, default])

Parses a dictionary attribute.

parse_int(d, key[, default])

Parses an integer attribute.

parse_mutually_exclusive_fields(fields)

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

parse_number(d, key[, default])

Parses a number attribute.

parse_object(d, key, cls[, default])

Parses an object attribute.

parse_object_array(d, key, cls[, default])

Parses an array of objects.

parse_object_dict(d, key, cls[, default])

Parses a dictionary whose values are objects.

parse_path(d, key[, default])

Parses a path attribute.

parse_raw(d, key[, default])

Parses a raw (arbitrary) JSON field.

parse_string(d, key[, default])

Parses a string attribute.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

validate_all_or_nothing_fields(fields)

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property method#

The name of the method.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

static base_config_cls(type)#

Returns the config class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunConfig subclass

build()#

Builds the BaseRun instance associated with this config.

Returns:

a BaseRun instance

classmethod builder()#

Returns a ConfigBuilder instance for this class.

property cls#

The fully-qualified name of this BaseRunConfig class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod default()#

Returns the default config instance.

By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.

classmethod from_dict(d)#

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

Parameters:

d – a JSON dict

Returns:

a BaseRunConfig

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_kwargs(**kwargs)#

Constructs a Config object from keyword arguments.

Parameters:

**kwargs – keyword arguments that define the fields expected by cls

Returns:

an instance of cls

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)#

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

Parameters:

**kwargs – subclass-specific credentials

classmethod load_default()#

Loads the default config instance from file.

Subclasses must implement this method if they intend to support default instances.

static parse_array(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw array attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default list to return if key is not present

Returns:

a list of raw (untouched) values

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#

Parses a boolean value.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default bool to return if key is not present

Returns:

True/False

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#

Parses a categorical JSON field, which must take a value from among the given choices.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • choices – either an iterable of possible values or an enum-like class whose attributes define the possible values

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field, which is equal to a value from choices

Raises:

ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary

static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#

Parses a dictionary attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default dict to return if key is not present

Returns:

a dictionary

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_int(d, key, default=<eta.core.config.NoDefault object>)#

Parses an integer attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default integer value to return if key is not present

Returns:

an int

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_mutually_exclusive_fields(fields)#

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Returns:

the (field, value) that was set

Raises:

ConfigError – if zero or more than one truthy value was found

static parse_number(d, key, default=<eta.core.config.NoDefault object>)#

Parses a number attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default numeric value to return if key is not present

Returns:

a number (e.g. int, float)

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an object attribute.

The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of d[key]

  • default – a default cls instance to return if key is not present

Returns:

an instance of cls

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an array of objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the elements of list d[key]

  • default – the default list to return if key is not present

Returns:

a list of cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses a dictionary whose values are objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the values of dictionary d[key]

  • default – the default dict of cls instances to return if key is not present

Returns:

a dictionary whose values are cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_path(d, key, default=<eta.core.config.NoDefault object>)#

Parses a path attribute.

The path is converted to an absolute path if necessary via os.path.abspath(os.path.expanduser(value)).

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a path string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw (arbitrary) JSON field.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field

Raises:

ConfigError – if no default value was provided and the key was not found in the dictionary

static parse_string(d, key, default=<eta.core.config.NoDefault object>)#

Parses a string attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

property run_cls#

The BaseRun class associated with this config.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

property type#

The type of run.

static validate_all_or_nothing_fields(fields)#

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Raises:

ConfigError – if some values are truth and some are not

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.UMAPVisualization(config)#

Bases: Visualization

Methods:

ensure_requirements()

Ensures that any necessary packages to execute this run are installed.

fit(embeddings)

cleanup(samples, key)

Cleans up the results of the run with the given key from the collection.

delete_run(samples, key[, cleanup])

Deletes the results associated with the given run key from the collection.

delete_runs(samples[, cleanup])

Deletes all runs from the collection.

ensure_usage_requirements()

Ensures that any necessary packages to use existing results for this run are installed.

from_config(config)

Instantiates a Configurable class from a <cls>Config instance.

from_dict(d)

Instantiates a Configurable class from a <cls>Config dict.

from_json(json_path)

Instantiates a Configurable class from a <cls>Config JSON file.

from_kwargs(**kwargs)

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

get_fields(samples, brain_key)

Gets the fields that were involved in the given run.

get_run_info(samples, key)

Gets the BaseRunInfo for the given key on the collection.

has_cached_run_results(samples, key)

Determines whether BaseRunResults for the given key are cached on the collection.

list_runs(samples[, type, method])

Returns the list of run keys on the given collection.

load_run_results(samples, key[, cache, ...])

Loads the BaseRunResults for the given key on the collection.

load_run_view(samples, key[, select_fields])

Loads the view on which the specified run was performed.

parse(class_name[, module_name])

Parses a Configurable subclass name string.

register_run(samples, key[, overwrite, cleanup])

Registers a run of this method under the given key on the given collection.

rename(samples, key, new_key)

Performs any necessary operations required to rename this run's key.

run_info_cls()

The BaseRunInfo class associated with this class.

save_run_info(samples, run_info[, ...])

Saves the run information on the collection.

save_run_results(samples, key, run_results)

Saves the run results on the collection.

update_run_config(samples, key, config)

Updates the BaseRunConfig for the given run on the collection.

update_run_key(samples, key, new_key)

Replaces the key for the given run with a new key.

validate(config)

Validates that the given config is an instance of <cls>Config.

validate_run(samples, key[, overwrite])

Validates that the collection can accept this run.

ensure_requirements()#

Ensures that any necessary packages to execute this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

fit(embeddings)#
cleanup(samples, key)#

Cleans up the results of the run with the given key from the collection.

Parameters:
classmethod delete_run(samples, key, cleanup=True)#

Deletes the results associated with the given run key from the collection.

Parameters:
classmethod delete_runs(samples, cleanup=True)#

Deletes all runs from the collection.

Parameters:
ensure_usage_requirements()#

Ensures that any necessary packages to use existing results for this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

classmethod from_config(config)#

Instantiates a Configurable class from a <cls>Config instance.

classmethod from_dict(d)#

Instantiates a Configurable class from a <cls>Config dict.

Parameters:

d – a dict to construct a <cls>Config

Returns:

an instance of cls

classmethod from_json(json_path)#

Instantiates a Configurable class from a <cls>Config JSON file.

Parameters:

json_path – path to a JSON file for type <cls>Config

Returns:

an instance of cls

classmethod from_kwargs(**kwargs)#

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

Parameters:

**kwargs – keyword arguments that define the fields of a <cls>Config dict

Returns:

an instance of cls

get_fields(samples, brain_key)#

Gets the fields that were involved in the given run.

Parameters:
Returns:

a list of fields

classmethod get_run_info(samples, key)#

Gets the BaseRunInfo for the given key on the collection.

Parameters:
Returns:

a BaseRunInfo

classmethod has_cached_run_results(samples, key)#

Determines whether BaseRunResults for the given key are cached on the collection.

Parameters:
Returns:

True/False

classmethod list_runs(samples, type=None, method=None, **kwargs)#

Returns the list of run keys on the given collection.

Parameters:
Returns:

a list of run keys

classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#

Loads the BaseRunResults for the given key on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • cache (True) – whether to cache the results on the collection

  • load_view (True) – whether to load the run view in the results (True) or the full dataset (False)

  • **kwargs – keyword arguments for the run’s BaseRunConfig.load_credentials() method

Returns:

a BaseRunResults, or None if the run did not save results

classmethod load_run_view(samples, key, select_fields=False)#

Loads the view on which the specified run was performed.

Parameters:
Returns:

a fiftyone.core.collections.SampleCollection

static parse(class_name, module_name=None)#

Parses a Configurable subclass name string.

Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.

Parameters:
  • class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”

  • module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module

Returns:

the Configurable class config_cls: the Config class associated with cls

Return type:

cls

register_run(samples, key, overwrite=True, cleanup=True)#

Registers a run of this method under the given key on the given collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • overwrite (True) – whether to allow overwriting an existing run of the same type

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

rename(samples, key, new_key)#

Performs any necessary operations required to rename this run’s key.

Parameters:
classmethod run_info_cls()#

The BaseRunInfo class associated with this class.

classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#

Saves the run information on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • run_info – a BaseRunInfo

  • overwrite (True) – whether to overwrite an existing run with the same key

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#

Saves the run results on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • run_results – a BaseRunResults, or None

  • overwrite (True) – whether to overwrite an existing result with the same key

  • cache (True) – whether to cache the results on the collection

classmethod update_run_config(samples, key, config)#

Updates the BaseRunConfig for the given run on the collection.

Parameters:
classmethod update_run_key(samples, key, new_key)#

Replaces the key for the given run with a new key.

Parameters:
classmethod validate(config)#

Validates that the given config is an instance of <cls>Config.

Raises:

ConfigurableError – if config is not an instance of <cls>Config

validate_run(samples, key, overwrite=True)#

Validates that the collection can accept this run.

The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.

Parameters:
Raises:

ValueError – if the run is invalid

class fiftyone.brain.visualization.TSNEVisualizationConfig(embeddings_field=None, points_field=None, similarity_index=None, model=None, model_kwargs=None, patches_field=None, num_dims=2, pca_dims=50, svd_solver='randomized', metric='euclidean', perplexity=30.0, learning_rate=200.0, max_iters=1000, seed=None, verbose=True, **kwargs)#

Bases: VisualizationConfig

Configuration for t-distributed Stochastic Neighbor Embedding (t-SNE) visualization.

See https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html for more information about the supported parameters.

Parameters:
  • embeddings_field (None) – the sample field containing the embeddings, if one was provided

  • points_field (None) – the name of a field in which to store the visualization points, if requested

  • similarity_index (None) – the similarity index containing the embeddings, if one was provided

  • model (None) – the fiftyone.core.models.Model or name of the zoo model that was used to compute embeddings, if known

  • model_kwargs (None) – a dictionary of optional keyword arguments to pass to the model’s Config when a model name is provided

  • patches_field (None) – the sample field defining the patches being analyzed, if any

  • num_dims (2) – the dimension of the visualization space

  • pca_dims (50) – the number of PCA dimensions to compute prior to running t-SNE. It is highly recommended to reduce the number of dimensions to a reasonable number (e.g. 50) before running t-SNE, as this will suppress some noise and speed up the computation of pairwise distances between samples

  • svd_solver ("randomized") – the SVD solver to use when performing PCA. Consult the sklearn docmentation for details

  • metric ("euclidean") – the metric to use when calculating distance between embeddings. Must be a supported value for the metric argument of scipy.spatial.distance.pdist

  • perplexity (30.0) – the perplexity to use. Perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Typical values are in [5, 50]

  • learning_rate (200.0) – the learning rate to use. Typical values are in [10, 1000]. If the learning rate is too high, the data may look like a ball with any point approximately equidistant from its nearest neighbours. If the learning rate is too low, most points may look compressed in a dense cloud with few outliers. If the cost function gets stuck in a bad local minimum increasing the learning rate may help

  • max_iters (1000) – the maximum number of iterations to run. Should be at least 250

  • seed (None) – a random seed

  • verbose (True) – whether to log progress

Attributes:

method

The name of the method.

cls

The fully-qualified name of this BaseRunConfig class.

run_cls

The BaseRun class associated with this config.

type

The type of run.

Methods:

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_config_cls(type)

Returns the config class for the given run type.

build()

Builds the BaseRun instance associated with this config.

builder()

Returns a ConfigBuilder instance for this class.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

default()

Returns the default config instance.

from_dict(d)

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_kwargs(**kwargs)

Constructs a Config object from keyword arguments.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

load_default()

Loads the default config instance from file.

parse_array(d, key[, default])

Parses a raw array attribute.

parse_bool(d, key[, default])

Parses a boolean value.

parse_categorical(d, key, choices[, default])

Parses a categorical JSON field, which must take a value from among the given choices.

parse_dict(d, key[, default])

Parses a dictionary attribute.

parse_int(d, key[, default])

Parses an integer attribute.

parse_mutually_exclusive_fields(fields)

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

parse_number(d, key[, default])

Parses a number attribute.

parse_object(d, key, cls[, default])

Parses an object attribute.

parse_object_array(d, key, cls[, default])

Parses an array of objects.

parse_object_dict(d, key, cls[, default])

Parses a dictionary whose values are objects.

parse_path(d, key[, default])

Parses a path attribute.

parse_raw(d, key[, default])

Parses a raw (arbitrary) JSON field.

parse_string(d, key[, default])

Parses a string attribute.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

validate_all_or_nothing_fields(fields)

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property method#

The name of the method.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

static base_config_cls(type)#

Returns the config class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunConfig subclass

build()#

Builds the BaseRun instance associated with this config.

Returns:

a BaseRun instance

classmethod builder()#

Returns a ConfigBuilder instance for this class.

property cls#

The fully-qualified name of this BaseRunConfig class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod default()#

Returns the default config instance.

By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.

classmethod from_dict(d)#

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

Parameters:

d – a JSON dict

Returns:

a BaseRunConfig

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_kwargs(**kwargs)#

Constructs a Config object from keyword arguments.

Parameters:

**kwargs – keyword arguments that define the fields expected by cls

Returns:

an instance of cls

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)#

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

Parameters:

**kwargs – subclass-specific credentials

classmethod load_default()#

Loads the default config instance from file.

Subclasses must implement this method if they intend to support default instances.

static parse_array(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw array attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default list to return if key is not present

Returns:

a list of raw (untouched) values

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#

Parses a boolean value.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default bool to return if key is not present

Returns:

True/False

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#

Parses a categorical JSON field, which must take a value from among the given choices.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • choices – either an iterable of possible values or an enum-like class whose attributes define the possible values

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field, which is equal to a value from choices

Raises:

ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary

static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#

Parses a dictionary attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default dict to return if key is not present

Returns:

a dictionary

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_int(d, key, default=<eta.core.config.NoDefault object>)#

Parses an integer attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default integer value to return if key is not present

Returns:

an int

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_mutually_exclusive_fields(fields)#

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Returns:

the (field, value) that was set

Raises:

ConfigError – if zero or more than one truthy value was found

static parse_number(d, key, default=<eta.core.config.NoDefault object>)#

Parses a number attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default numeric value to return if key is not present

Returns:

a number (e.g. int, float)

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an object attribute.

The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of d[key]

  • default – a default cls instance to return if key is not present

Returns:

an instance of cls

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an array of objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the elements of list d[key]

  • default – the default list to return if key is not present

Returns:

a list of cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses a dictionary whose values are objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the values of dictionary d[key]

  • default – the default dict of cls instances to return if key is not present

Returns:

a dictionary whose values are cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_path(d, key, default=<eta.core.config.NoDefault object>)#

Parses a path attribute.

The path is converted to an absolute path if necessary via os.path.abspath(os.path.expanduser(value)).

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a path string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw (arbitrary) JSON field.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field

Raises:

ConfigError – if no default value was provided and the key was not found in the dictionary

static parse_string(d, key, default=<eta.core.config.NoDefault object>)#

Parses a string attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

property run_cls#

The BaseRun class associated with this config.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

property type#

The type of run.

static validate_all_or_nothing_fields(fields)#

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Raises:

ConfigError – if some values are truth and some are not

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.TSNEVisualization(config)#

Bases: Visualization

Methods:

fit(embeddings)

cleanup(samples, key)

Cleans up the results of the run with the given key from the collection.

delete_run(samples, key[, cleanup])

Deletes the results associated with the given run key from the collection.

delete_runs(samples[, cleanup])

Deletes all runs from the collection.

ensure_requirements()

Ensures that any necessary packages to execute this run are installed.

ensure_usage_requirements()

Ensures that any necessary packages to use existing results for this run are installed.

from_config(config)

Instantiates a Configurable class from a <cls>Config instance.

from_dict(d)

Instantiates a Configurable class from a <cls>Config dict.

from_json(json_path)

Instantiates a Configurable class from a <cls>Config JSON file.

from_kwargs(**kwargs)

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

get_fields(samples, brain_key)

Gets the fields that were involved in the given run.

get_run_info(samples, key)

Gets the BaseRunInfo for the given key on the collection.

has_cached_run_results(samples, key)

Determines whether BaseRunResults for the given key are cached on the collection.

list_runs(samples[, type, method])

Returns the list of run keys on the given collection.

load_run_results(samples, key[, cache, ...])

Loads the BaseRunResults for the given key on the collection.

load_run_view(samples, key[, select_fields])

Loads the view on which the specified run was performed.

parse(class_name[, module_name])

Parses a Configurable subclass name string.

register_run(samples, key[, overwrite, cleanup])

Registers a run of this method under the given key on the given collection.

rename(samples, key, new_key)

Performs any necessary operations required to rename this run's key.

run_info_cls()

The BaseRunInfo class associated with this class.

save_run_info(samples, run_info[, ...])

Saves the run information on the collection.

save_run_results(samples, key, run_results)

Saves the run results on the collection.

update_run_config(samples, key, config)

Updates the BaseRunConfig for the given run on the collection.

update_run_key(samples, key, new_key)

Replaces the key for the given run with a new key.

validate(config)

Validates that the given config is an instance of <cls>Config.

validate_run(samples, key[, overwrite])

Validates that the collection can accept this run.

fit(embeddings)#
cleanup(samples, key)#

Cleans up the results of the run with the given key from the collection.

Parameters:
classmethod delete_run(samples, key, cleanup=True)#

Deletes the results associated with the given run key from the collection.

Parameters:
classmethod delete_runs(samples, cleanup=True)#

Deletes all runs from the collection.

Parameters:
ensure_requirements()#

Ensures that any necessary packages to execute this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

ensure_usage_requirements()#

Ensures that any necessary packages to use existing results for this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

classmethod from_config(config)#

Instantiates a Configurable class from a <cls>Config instance.

classmethod from_dict(d)#

Instantiates a Configurable class from a <cls>Config dict.

Parameters:

d – a dict to construct a <cls>Config

Returns:

an instance of cls

classmethod from_json(json_path)#

Instantiates a Configurable class from a <cls>Config JSON file.

Parameters:

json_path – path to a JSON file for type <cls>Config

Returns:

an instance of cls

classmethod from_kwargs(**kwargs)#

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

Parameters:

**kwargs – keyword arguments that define the fields of a <cls>Config dict

Returns:

an instance of cls

get_fields(samples, brain_key)#

Gets the fields that were involved in the given run.

Parameters:
Returns:

a list of fields

classmethod get_run_info(samples, key)#

Gets the BaseRunInfo for the given key on the collection.

Parameters:
Returns:

a BaseRunInfo

classmethod has_cached_run_results(samples, key)#

Determines whether BaseRunResults for the given key are cached on the collection.

Parameters:
Returns:

True/False

classmethod list_runs(samples, type=None, method=None, **kwargs)#

Returns the list of run keys on the given collection.

Parameters:
Returns:

a list of run keys

classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#

Loads the BaseRunResults for the given key on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • cache (True) – whether to cache the results on the collection

  • load_view (True) – whether to load the run view in the results (True) or the full dataset (False)

  • **kwargs – keyword arguments for the run’s BaseRunConfig.load_credentials() method

Returns:

a BaseRunResults, or None if the run did not save results

classmethod load_run_view(samples, key, select_fields=False)#

Loads the view on which the specified run was performed.

Parameters:
Returns:

a fiftyone.core.collections.SampleCollection

static parse(class_name, module_name=None)#

Parses a Configurable subclass name string.

Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.

Parameters:
  • class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”

  • module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module

Returns:

the Configurable class config_cls: the Config class associated with cls

Return type:

cls

register_run(samples, key, overwrite=True, cleanup=True)#

Registers a run of this method under the given key on the given collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • overwrite (True) – whether to allow overwriting an existing run of the same type

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

rename(samples, key, new_key)#

Performs any necessary operations required to rename this run’s key.

Parameters:
classmethod run_info_cls()#

The BaseRunInfo class associated with this class.

classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#

Saves the run information on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • run_info – a BaseRunInfo

  • overwrite (True) – whether to overwrite an existing run with the same key

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#

Saves the run results on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • run_results – a BaseRunResults, or None

  • overwrite (True) – whether to overwrite an existing result with the same key

  • cache (True) – whether to cache the results on the collection

classmethod update_run_config(samples, key, config)#

Updates the BaseRunConfig for the given run on the collection.

Parameters:
classmethod update_run_key(samples, key, new_key)#

Replaces the key for the given run with a new key.

Parameters:
classmethod validate(config)#

Validates that the given config is an instance of <cls>Config.

Raises:

ConfigurableError – if config is not an instance of <cls>Config

validate_run(samples, key, overwrite=True)#

Validates that the collection can accept this run.

The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.

Parameters:
Raises:

ValueError – if the run is invalid

class fiftyone.brain.visualization.PCAVisualizationConfig(embeddings_field=None, points_field=None, similarity_index=None, model=None, model_kwargs=None, patches_field=None, num_dims=2, svd_solver='randomized', seed=None, **kwargs)#

Bases: VisualizationConfig

Configuration for principal component analysis (PCA) embedding visualization.

See https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html for more information about the supported parameters.

Parameters:
  • embeddings_field (None) – the sample field containing the embeddings, if one was provided

  • points_field (None) – the name of a field in which to store the visualization points, if requested

  • similarity_index (None) – the similarity index containing the embeddings, if one was provided

  • model (None) – the fiftyone.core.models.Model or name of the zoo model that was used to compute embeddings, if known

  • model_kwargs (None) – a dictionary of optional keyword arguments to pass to the model’s Config when a model name is provided

  • patches_field (None) – the sample field defining the patches being analyzed, if any

  • num_dims (2) – the dimension of the visualization space

  • svd_solver ("randomized") – the SVD solver to use. Consult the sklearn docmentation for details

  • seed (None) – a random seed

Attributes:

method

The name of the method.

cls

The fully-qualified name of this BaseRunConfig class.

run_cls

The BaseRun class associated with this config.

type

The type of run.

Methods:

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_config_cls(type)

Returns the config class for the given run type.

build()

Builds the BaseRun instance associated with this config.

builder()

Returns a ConfigBuilder instance for this class.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

default()

Returns the default config instance.

from_dict(d)

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_kwargs(**kwargs)

Constructs a Config object from keyword arguments.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

load_default()

Loads the default config instance from file.

parse_array(d, key[, default])

Parses a raw array attribute.

parse_bool(d, key[, default])

Parses a boolean value.

parse_categorical(d, key, choices[, default])

Parses a categorical JSON field, which must take a value from among the given choices.

parse_dict(d, key[, default])

Parses a dictionary attribute.

parse_int(d, key[, default])

Parses an integer attribute.

parse_mutually_exclusive_fields(fields)

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

parse_number(d, key[, default])

Parses a number attribute.

parse_object(d, key, cls[, default])

Parses an object attribute.

parse_object_array(d, key, cls[, default])

Parses an array of objects.

parse_object_dict(d, key, cls[, default])

Parses a dictionary whose values are objects.

parse_path(d, key[, default])

Parses a path attribute.

parse_raw(d, key[, default])

Parses a raw (arbitrary) JSON field.

parse_string(d, key[, default])

Parses a string attribute.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

validate_all_or_nothing_fields(fields)

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property method#

The name of the method.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

static base_config_cls(type)#

Returns the config class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunConfig subclass

build()#

Builds the BaseRun instance associated with this config.

Returns:

a BaseRun instance

classmethod builder()#

Returns a ConfigBuilder instance for this class.

property cls#

The fully-qualified name of this BaseRunConfig class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod default()#

Returns the default config instance.

By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.

classmethod from_dict(d)#

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

Parameters:

d – a JSON dict

Returns:

a BaseRunConfig

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_kwargs(**kwargs)#

Constructs a Config object from keyword arguments.

Parameters:

**kwargs – keyword arguments that define the fields expected by cls

Returns:

an instance of cls

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)#

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

Parameters:

**kwargs – subclass-specific credentials

classmethod load_default()#

Loads the default config instance from file.

Subclasses must implement this method if they intend to support default instances.

static parse_array(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw array attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default list to return if key is not present

Returns:

a list of raw (untouched) values

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#

Parses a boolean value.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default bool to return if key is not present

Returns:

True/False

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#

Parses a categorical JSON field, which must take a value from among the given choices.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • choices – either an iterable of possible values or an enum-like class whose attributes define the possible values

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field, which is equal to a value from choices

Raises:

ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary

static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#

Parses a dictionary attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default dict to return if key is not present

Returns:

a dictionary

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_int(d, key, default=<eta.core.config.NoDefault object>)#

Parses an integer attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default integer value to return if key is not present

Returns:

an int

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_mutually_exclusive_fields(fields)#

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Returns:

the (field, value) that was set

Raises:

ConfigError – if zero or more than one truthy value was found

static parse_number(d, key, default=<eta.core.config.NoDefault object>)#

Parses a number attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default numeric value to return if key is not present

Returns:

a number (e.g. int, float)

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an object attribute.

The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of d[key]

  • default – a default cls instance to return if key is not present

Returns:

an instance of cls

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an array of objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the elements of list d[key]

  • default – the default list to return if key is not present

Returns:

a list of cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses a dictionary whose values are objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the values of dictionary d[key]

  • default – the default dict of cls instances to return if key is not present

Returns:

a dictionary whose values are cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_path(d, key, default=<eta.core.config.NoDefault object>)#

Parses a path attribute.

The path is converted to an absolute path if necessary via os.path.abspath(os.path.expanduser(value)).

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a path string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw (arbitrary) JSON field.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field

Raises:

ConfigError – if no default value was provided and the key was not found in the dictionary

static parse_string(d, key, default=<eta.core.config.NoDefault object>)#

Parses a string attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

property run_cls#

The BaseRun class associated with this config.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

property type#

The type of run.

static validate_all_or_nothing_fields(fields)#

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Raises:

ConfigError – if some values are truth and some are not

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.PCAVisualization(config)#

Bases: Visualization

Methods:

fit(embeddings)

cleanup(samples, key)

Cleans up the results of the run with the given key from the collection.

delete_run(samples, key[, cleanup])

Deletes the results associated with the given run key from the collection.

delete_runs(samples[, cleanup])

Deletes all runs from the collection.

ensure_requirements()

Ensures that any necessary packages to execute this run are installed.

ensure_usage_requirements()

Ensures that any necessary packages to use existing results for this run are installed.

from_config(config)

Instantiates a Configurable class from a <cls>Config instance.

from_dict(d)

Instantiates a Configurable class from a <cls>Config dict.

from_json(json_path)

Instantiates a Configurable class from a <cls>Config JSON file.

from_kwargs(**kwargs)

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

get_fields(samples, brain_key)

Gets the fields that were involved in the given run.

get_run_info(samples, key)

Gets the BaseRunInfo for the given key on the collection.

has_cached_run_results(samples, key)

Determines whether BaseRunResults for the given key are cached on the collection.

list_runs(samples[, type, method])

Returns the list of run keys on the given collection.

load_run_results(samples, key[, cache, ...])

Loads the BaseRunResults for the given key on the collection.

load_run_view(samples, key[, select_fields])

Loads the view on which the specified run was performed.

parse(class_name[, module_name])

Parses a Configurable subclass name string.

register_run(samples, key[, overwrite, cleanup])

Registers a run of this method under the given key on the given collection.

rename(samples, key, new_key)

Performs any necessary operations required to rename this run's key.

run_info_cls()

The BaseRunInfo class associated with this class.

save_run_info(samples, run_info[, ...])

Saves the run information on the collection.

save_run_results(samples, key, run_results)

Saves the run results on the collection.

update_run_config(samples, key, config)

Updates the BaseRunConfig for the given run on the collection.

update_run_key(samples, key, new_key)

Replaces the key for the given run with a new key.

validate(config)

Validates that the given config is an instance of <cls>Config.

validate_run(samples, key[, overwrite])

Validates that the collection can accept this run.

fit(embeddings)#
cleanup(samples, key)#

Cleans up the results of the run with the given key from the collection.

Parameters:
classmethod delete_run(samples, key, cleanup=True)#

Deletes the results associated with the given run key from the collection.

Parameters:
classmethod delete_runs(samples, cleanup=True)#

Deletes all runs from the collection.

Parameters:
ensure_requirements()#

Ensures that any necessary packages to execute this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

ensure_usage_requirements()#

Ensures that any necessary packages to use existing results for this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

classmethod from_config(config)#

Instantiates a Configurable class from a <cls>Config instance.

classmethod from_dict(d)#

Instantiates a Configurable class from a <cls>Config dict.

Parameters:

d – a dict to construct a <cls>Config

Returns:

an instance of cls

classmethod from_json(json_path)#

Instantiates a Configurable class from a <cls>Config JSON file.

Parameters:

json_path – path to a JSON file for type <cls>Config

Returns:

an instance of cls

classmethod from_kwargs(**kwargs)#

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

Parameters:

**kwargs – keyword arguments that define the fields of a <cls>Config dict

Returns:

an instance of cls

get_fields(samples, brain_key)#

Gets the fields that were involved in the given run.

Parameters:
Returns:

a list of fields

classmethod get_run_info(samples, key)#

Gets the BaseRunInfo for the given key on the collection.

Parameters:
Returns:

a BaseRunInfo

classmethod has_cached_run_results(samples, key)#

Determines whether BaseRunResults for the given key are cached on the collection.

Parameters:
Returns:

True/False

classmethod list_runs(samples, type=None, method=None, **kwargs)#

Returns the list of run keys on the given collection.

Parameters:
Returns:

a list of run keys

classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#

Loads the BaseRunResults for the given key on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • cache (True) – whether to cache the results on the collection

  • load_view (True) – whether to load the run view in the results (True) or the full dataset (False)

  • **kwargs – keyword arguments for the run’s BaseRunConfig.load_credentials() method

Returns:

a BaseRunResults, or None if the run did not save results

classmethod load_run_view(samples, key, select_fields=False)#

Loads the view on which the specified run was performed.

Parameters:
Returns:

a fiftyone.core.collections.SampleCollection

static parse(class_name, module_name=None)#

Parses a Configurable subclass name string.

Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.

Parameters:
  • class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”

  • module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module

Returns:

the Configurable class config_cls: the Config class associated with cls

Return type:

cls

register_run(samples, key, overwrite=True, cleanup=True)#

Registers a run of this method under the given key on the given collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • overwrite (True) – whether to allow overwriting an existing run of the same type

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

rename(samples, key, new_key)#

Performs any necessary operations required to rename this run’s key.

Parameters:
classmethod run_info_cls()#

The BaseRunInfo class associated with this class.

classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#

Saves the run information on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • run_info – a BaseRunInfo

  • overwrite (True) – whether to overwrite an existing run with the same key

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#

Saves the run results on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • run_results – a BaseRunResults, or None

  • overwrite (True) – whether to overwrite an existing result with the same key

  • cache (True) – whether to cache the results on the collection

classmethod update_run_config(samples, key, config)#

Updates the BaseRunConfig for the given run on the collection.

Parameters:
classmethod update_run_key(samples, key, new_key)#

Replaces the key for the given run with a new key.

Parameters:
classmethod validate(config)#

Validates that the given config is an instance of <cls>Config.

Raises:

ConfigurableError – if config is not an instance of <cls>Config

validate_run(samples, key, overwrite=True)#

Validates that the collection can accept this run.

The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.

Parameters:
Raises:

ValueError – if the run is invalid

class fiftyone.brain.visualization.ManualVisualizationConfig(patches_field=None, num_dims=2, **kwargs)#

Bases: VisualizationConfig

Configuration for manually-provided low-dimensional visualizations.

Parameters:
  • patches_field (None) – the sample field defining the patches being analyzed, if any

  • num_dims (2) – the dimension of the visualization space

Attributes:

method

The name of the method.

cls

The fully-qualified name of this BaseRunConfig class.

run_cls

The BaseRun class associated with this config.

type

The type of run.

Methods:

attributes()

Returns the list of class attributes that will be serialized by serialize().

base_config_cls(type)

Returns the config class for the given run type.

build()

Builds the BaseRun instance associated with this config.

builder()

Returns a ConfigBuilder instance for this class.

copy()

Returns a deep copy of the object.

custom_attributes([dynamic, private])

Returns a customizable list of class attributes.

default()

Returns the default config instance.

from_dict(d)

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

from_json(path, *args, **kwargs)

Constructs a Serializable object from a JSON file.

from_kwargs(**kwargs)

Constructs a Config object from keyword arguments.

from_str(s, *args, **kwargs)

Constructs a Serializable object from a JSON string.

get_class_name()

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

load_default()

Loads the default config instance from file.

parse_array(d, key[, default])

Parses a raw array attribute.

parse_bool(d, key[, default])

Parses a boolean value.

parse_categorical(d, key, choices[, default])

Parses a categorical JSON field, which must take a value from among the given choices.

parse_dict(d, key[, default])

Parses a dictionary attribute.

parse_int(d, key[, default])

Parses an integer attribute.

parse_mutually_exclusive_fields(fields)

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

parse_number(d, key[, default])

Parses a number attribute.

parse_object(d, key, cls[, default])

Parses an object attribute.

parse_object_array(d, key, cls[, default])

Parses an array of objects.

parse_object_dict(d, key, cls[, default])

Parses a dictionary whose values are objects.

parse_path(d, key[, default])

Parses a path attribute.

parse_raw(d, key[, default])

Parses a raw (arbitrary) JSON field.

parse_string(d, key[, default])

Parses a string attribute.

serialize([reflective])

Serializes the object into a dictionary.

to_str([pretty_print])

Returns a string representation of this object.

validate_all_or_nothing_fields(fields)

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

write_json(path[, pretty_print])

Serializes the object and writes it to disk.

property method#

The name of the method.

attributes()#

Returns the list of class attributes that will be serialized by serialize().

Returns:

a list of attributes

static base_config_cls(type)#

Returns the config class for the given run type.

Parameters:

type – a BaseRunConfig.type

Returns:

a BaseRunConfig subclass

build()#

Builds the BaseRun instance associated with this config.

Returns:

a BaseRun instance

classmethod builder()#

Returns a ConfigBuilder instance for this class.

property cls#

The fully-qualified name of this BaseRunConfig class.

copy()#

Returns a deep copy of the object.

Returns:

a Serializable instance

custom_attributes(dynamic=False, private=False)#

Returns a customizable list of class attributes.

By default, all attributes in vars(self) are returned, minus private attributes (those starting with “_”).

Parameters:
  • dynamic – whether to include dynamic properties, e.g., those defined by getter/setter methods or the @property decorator. By default, this is False

  • private – whether to include private properties, i.e., those starting with “_”. By default, this is False

Returns:

a list of class attributes

classmethod default()#

Returns the default config instance.

By default, this method instantiates the class from an empty dictionary, which will only succeed if all attributes are optional. Otherwise, subclasses should override this method to provide the desired default configuration.

classmethod from_dict(d)#

Constructs a BaseRunConfig from a serialized JSON dict representation of it.

Parameters:

d – a JSON dict

Returns:

a BaseRunConfig

classmethod from_json(path, *args, **kwargs)#

Constructs a Serializable object from a JSON file.

Subclasses may override this method, but, by default, this method simply reads the JSON and calls from_dict(), which subclasses must implement.

Parameters:
  • path – the path to the JSON file on disk

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod from_kwargs(**kwargs)#

Constructs a Config object from keyword arguments.

Parameters:

**kwargs – keyword arguments that define the fields expected by cls

Returns:

an instance of cls

classmethod from_str(s, *args, **kwargs)#

Constructs a Serializable object from a JSON string.

Subclasses may override this method, but, by default, this method simply parses the string and calls from_dict(), which subclasses must implement.

Parameters:
  • s – a JSON string representation of a Serializable object

  • *args – optional positional arguments for self.from_dict()

  • **kwargs – optional keyword arguments for self.from_dict()

Returns:

an instance of the Serializable class

classmethod get_class_name()#

Returns the fully-qualified class name string of this object.

load_credentials(**kwargs)#

Loads any necessary credentials from the given keyword arguments or the relevant FiftyOne config.

Parameters:

**kwargs – subclass-specific credentials

classmethod load_default()#

Loads the default config instance from file.

Subclasses must implement this method if they intend to support default instances.

static parse_array(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw array attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default list to return if key is not present

Returns:

a list of raw (untouched) values

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_bool(d, key, default=<eta.core.config.NoDefault object>)#

Parses a boolean value.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default bool to return if key is not present

Returns:

True/False

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_categorical(d, key, choices, default=<eta.core.config.NoDefault object>)#

Parses a categorical JSON field, which must take a value from among the given choices.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • choices – either an iterable of possible values or an enum-like class whose attributes define the possible values

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field, which is equal to a value from choices

Raises:

ConfigError – if the key was present in the dictionary but its value was not an allowed choice, or if no default value was provided and the key was not found in the dictionary

static parse_dict(d, key, default=<eta.core.config.NoDefault object>)#

Parses a dictionary attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default dict to return if key is not present

Returns:

a dictionary

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_int(d, key, default=<eta.core.config.NoDefault object>)#

Parses an integer attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default integer value to return if key is not present

Returns:

an int

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_mutually_exclusive_fields(fields)#

Parses a mutually exclusive dictionary of pre-parsed fields, which must contain exactly one field with a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Returns:

the (field, value) that was set

Raises:

ConfigError – if zero or more than one truthy value was found

static parse_number(d, key, default=<eta.core.config.NoDefault object>)#

Parses a number attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default numeric value to return if key is not present

Returns:

a number (e.g. int, float)

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an object attribute.

The value of d[key] can be either an instance of cls or a serialized dict from an instance of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of d[key]

  • default – a default cls instance to return if key is not present

Returns:

an instance of cls

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_array(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses an array of objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the elements of list d[key]

  • default – the default list to return if key is not present

Returns:

a list of cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_object_dict(d, key, cls, default=<eta.core.config.NoDefault object>)#

Parses a dictionary whose values are objects.

The values in d[key] can be either instances of cls or serialized dicts from instances of cls.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • cls – the class of the values of dictionary d[key]

  • default – the default dict of cls instances to return if key is not present

Returns:

a dictionary whose values are cls instances

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_path(d, key, default=<eta.core.config.NoDefault object>)#

Parses a path attribute.

The path is converted to an absolute path if necessary via os.path.abspath(os.path.expanduser(value)).

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a path string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

static parse_raw(d, key, default=<eta.core.config.NoDefault object>)#

Parses a raw (arbitrary) JSON field.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default value to return if key is not present

Returns:

the raw (untouched) value of the given field

Raises:

ConfigError – if no default value was provided and the key was not found in the dictionary

static parse_string(d, key, default=<eta.core.config.NoDefault object>)#

Parses a string attribute.

Parameters:
  • d – a JSON dictionary

  • key – the key to parse

  • default – a default string to return if key is not present

Returns:

a string

Raises:

ConfigError – if the field value was the wrong type or no default value was provided and the key was not found in the dictionary

property run_cls#

The BaseRun class associated with this config.

serialize(reflective=False)#

Serializes the object into a dictionary.

Serialization is applied recursively to all attributes in the object, including element-wise serialization of lists and dictionary values.

Parameters:

reflective – whether to include reflective attributes when serializing the object. By default, this is False

Returns:

a JSON dictionary representation of the object

to_str(pretty_print=True, **kwargs)#

Returns a string representation of this object.

Parameters:
  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is True

  • **kwargs – optional keyword arguments for self.serialize()

Returns:

a string representation of the object

property type#

The type of run.

static validate_all_or_nothing_fields(fields)#

Validates a dictionary of pre-parsed fields checking that either all or none of the fields have a truthy value.

Parameters:

fields – a dictionary of pre-parsed fields

Raises:

ConfigError – if some values are truth and some are not

write_json(path, pretty_print=False, **kwargs)#

Serializes the object and writes it to disk.

Parameters:
  • path – the output path

  • pretty_print – whether to render the JSON in human readable format with newlines and indentations. By default, this is False

  • **kwargs – optional keyword arguments for self.serialize()

class fiftyone.brain.visualization.ManualVisualization(config)#

Bases: Visualization

Methods:

fit(embeddings)

cleanup(samples, key)

Cleans up the results of the run with the given key from the collection.

delete_run(samples, key[, cleanup])

Deletes the results associated with the given run key from the collection.

delete_runs(samples[, cleanup])

Deletes all runs from the collection.

ensure_requirements()

Ensures that any necessary packages to execute this run are installed.

ensure_usage_requirements()

Ensures that any necessary packages to use existing results for this run are installed.

from_config(config)

Instantiates a Configurable class from a <cls>Config instance.

from_dict(d)

Instantiates a Configurable class from a <cls>Config dict.

from_json(json_path)

Instantiates a Configurable class from a <cls>Config JSON file.

from_kwargs(**kwargs)

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

get_fields(samples, brain_key)

Gets the fields that were involved in the given run.

get_run_info(samples, key)

Gets the BaseRunInfo for the given key on the collection.

has_cached_run_results(samples, key)

Determines whether BaseRunResults for the given key are cached on the collection.

list_runs(samples[, type, method])

Returns the list of run keys on the given collection.

load_run_results(samples, key[, cache, ...])

Loads the BaseRunResults for the given key on the collection.

load_run_view(samples, key[, select_fields])

Loads the view on which the specified run was performed.

parse(class_name[, module_name])

Parses a Configurable subclass name string.

register_run(samples, key[, overwrite, cleanup])

Registers a run of this method under the given key on the given collection.

rename(samples, key, new_key)

Performs any necessary operations required to rename this run's key.

run_info_cls()

The BaseRunInfo class associated with this class.

save_run_info(samples, run_info[, ...])

Saves the run information on the collection.

save_run_results(samples, key, run_results)

Saves the run results on the collection.

update_run_config(samples, key, config)

Updates the BaseRunConfig for the given run on the collection.

update_run_key(samples, key, new_key)

Replaces the key for the given run with a new key.

validate(config)

Validates that the given config is an instance of <cls>Config.

validate_run(samples, key[, overwrite])

Validates that the collection can accept this run.

fit(embeddings)#
cleanup(samples, key)#

Cleans up the results of the run with the given key from the collection.

Parameters:
classmethod delete_run(samples, key, cleanup=True)#

Deletes the results associated with the given run key from the collection.

Parameters:
classmethod delete_runs(samples, cleanup=True)#

Deletes all runs from the collection.

Parameters:
ensure_requirements()#

Ensures that any necessary packages to execute this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

ensure_usage_requirements()#

Ensures that any necessary packages to use existing results for this run are installed.

Runs should respect fiftyone.config.requirement_error_level when handling errors.

classmethod from_config(config)#

Instantiates a Configurable class from a <cls>Config instance.

classmethod from_dict(d)#

Instantiates a Configurable class from a <cls>Config dict.

Parameters:

d – a dict to construct a <cls>Config

Returns:

an instance of cls

classmethod from_json(json_path)#

Instantiates a Configurable class from a <cls>Config JSON file.

Parameters:

json_path – path to a JSON file for type <cls>Config

Returns:

an instance of cls

classmethod from_kwargs(**kwargs)#

Instantiates a Configurable class from keyword arguments defining the attributes of a <cls>Config.

Parameters:

**kwargs – keyword arguments that define the fields of a <cls>Config dict

Returns:

an instance of cls

get_fields(samples, brain_key)#

Gets the fields that were involved in the given run.

Parameters:
Returns:

a list of fields

classmethod get_run_info(samples, key)#

Gets the BaseRunInfo for the given key on the collection.

Parameters:
Returns:

a BaseRunInfo

classmethod has_cached_run_results(samples, key)#

Determines whether BaseRunResults for the given key are cached on the collection.

Parameters:
Returns:

True/False

classmethod list_runs(samples, type=None, method=None, **kwargs)#

Returns the list of run keys on the given collection.

Parameters:
Returns:

a list of run keys

classmethod load_run_results(samples, key, cache=True, load_view=True, **kwargs)#

Loads the BaseRunResults for the given key on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • cache (True) – whether to cache the results on the collection

  • load_view (True) – whether to load the run view in the results (True) or the full dataset (False)

  • **kwargs – keyword arguments for the run’s BaseRunConfig.load_credentials() method

Returns:

a BaseRunResults, or None if the run did not save results

classmethod load_run_view(samples, key, select_fields=False)#

Loads the view on which the specified run was performed.

Parameters:
Returns:

a fiftyone.core.collections.SampleCollection

static parse(class_name, module_name=None)#

Parses a Configurable subclass name string.

Assumes both the Configurable class and the Config class are defined in the same module. The module containing the classes will be loaded if necessary.

Parameters:
  • class_name – a string containing the name of the Configurable class, e.g. “ClassName”, or a fully-qualified class name, e.g. “eta.core.config.ClassName”

  • module_name – a string containing the fully-qualified module name, e.g. “eta.core.config”, or None if class_name includes the module name. Set module_name = __name__ to load a class from the calling module

Returns:

the Configurable class config_cls: the Config class associated with cls

Return type:

cls

register_run(samples, key, overwrite=True, cleanup=True)#

Registers a run of this method under the given key on the given collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • overwrite (True) – whether to allow overwriting an existing run of the same type

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

rename(samples, key, new_key)#

Performs any necessary operations required to rename this run’s key.

Parameters:
classmethod run_info_cls()#

The BaseRunInfo class associated with this class.

classmethod save_run_info(samples, run_info, overwrite=True, cleanup=True)#

Saves the run information on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • run_info – a BaseRunInfo

  • overwrite (True) – whether to overwrite an existing run with the same key

  • cleanup (True) – whether to execute an existing run’s BaseRun.cleanup() method when overwriting it

classmethod save_run_results(samples, key, run_results, overwrite=True, cache=True)#

Saves the run results on the collection.

Parameters:
  • samples – a fiftyone.core.collections.SampleCollection

  • key – a run key

  • run_results – a BaseRunResults, or None

  • overwrite (True) – whether to overwrite an existing result with the same key

  • cache (True) – whether to cache the results on the collection

classmethod update_run_config(samples, key, config)#

Updates the BaseRunConfig for the given run on the collection.

Parameters:
classmethod update_run_key(samples, key, new_key)#

Replaces the key for the given run with a new key.

Parameters:
classmethod validate(config)#

Validates that the given config is an instance of <cls>Config.

Raises:

ConfigurableError – if config is not an instance of <cls>Config

validate_run(samples, key, overwrite=True)#

Validates that the collection can accept this run.

The run may be invalid if, for example, a run of a different type has already been run under the same key and thus overwriting it would cause ambiguity on how to cleanup the results.

Parameters:
Raises:

ValueError – if the run is invalid