fiftyone.core.expressions¶
Expressions for fiftyone.core.stages.ViewStage
definitions.
Functions:
|
Converts an expression to its MongoDB representation. |
|
Determines whether the given expression involves a |
|
Extracts the group slices from the given expression, if any. |
Classes:
|
An expression defining a possibly-complex manipulation of a document. |
|
A |
|
A |
Data:
A |
-
fiftyone.core.expressions.
to_mongo
(expr, prefix=None)¶ Converts an expression to its MongoDB representation.
- Parameters
expr – a
ViewExpression
or an already serialized MongoDB expressionprefix (None) – an optional prefix to prepend to all
ViewField
instances in the expression
- Returns
a MongoDB expression
-
fiftyone.core.expressions.
is_frames_expr
(expr)¶ Determines whether the given expression involves a
"frames"
field.- Parameters
expr –
a
ViewExpression
or an already serialized MongoDB expression- Returns
True/False
-
fiftyone.core.expressions.
get_group_slices
(expr)¶ Extracts the group slices from the given expression, if any.
- Parameters
expr –
a
ViewExpression
or an already serialized MongoDB expression- Returns
a (possibly-empty) list of group slices
-
class
fiftyone.core.expressions.
ViewExpression
(expr)¶ Bases:
object
An expression defining a possibly-complex manipulation of a document.
View expressions enable you to specify manipulations of documents that can then be executed on your data in the context of a
fiftyone.core.stages.ViewStage
.Typically,
ViewExpression
instances are built by creating one or moreViewField
instances and then defining the desired operation by recursively invoking methods on these objects:from fiftyone import ViewField as F # An expression that tests whether the `confidence` field of a document # is greater than 0.9 F("confidence") > 0.9 # An expression that computes the area of a bounding box # Bboxes are in [top-left-x, top-left-y, width, height] format F("bounding_box")[2] * F("bounding_box")[3] # # A more complex expression that returns one of three strings based on # the number of high confidence predictions in the `detections` field # of a document with the label "cat" or "dog" after normalizing to # lowercase # F("detections").map( F().set_field("label", F("label").lower()) ).filter( F("label").is_in(("cat", "dog")) & (F("confidence") > 0.9) ).length().switch( { (F() >= 10): "zoo", (F() > 2) & (F() < 10): "party", (F() <= 2): "home", } )
There are a few cases where you may need to instantitate a
ViewExpression
directly, typically when you need to write an expression that begins with a literal Python value:from fiftyone import ViewExpression as E from fiftyone import ViewField as F # Concatenates the "-animal" string to the `label` field of a document F("label").concat("-animal") # Prepends the "animal-" string to the `label` field E("animal-").concat(F("label")) # Appends the strings "test" and "validation" to the contents of the # `tags` field array # assumed to be an array F("tags").extend(["test", "validation"]) # Prepends the "test" and "validation" strings to the `tags` field E(["test", "validation"]).extend(F("tags"))
See MongoDB expressions for more details about the underlying expression language that this class encapsulates.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # # Create a view that only contains predictions whose bounding boxes # have area < 0.2 with confidence > 0.9, and only include samples with # at least 15 such objects # view = dataset.filter_labels( "predictions", (bbox_area < 0.2) & (F("confidence") > 0.9) ).match( F("predictions.detections").length() > 15 ) session = fo.launch_app(view=view)
-
__eq__
(other)¶ Determines whether this expression is equal to the given value or expression,
self == other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "cifar10", split="test", max_samples=500, shuffle=True ) # Get samples whose ground truth `label` is "airplane" view = dataset.match(F("ground_truth.label") == "airplane") print(view.distinct("ground_truth.label"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__ge__
(other)¶ Determines whether this expression is greater than or equal to the given value or expression,
self >= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness") >= 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__gt__
(other)¶ Determines whether this expression is greater than the given value or expression,
self >= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is > 0.5 view = dataset.match(F("uniqueness") > 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__le__
(other)¶ Determines whether this expression is less than or equal to the given value or expression,
self <= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is <= 0.5 view = dataset.match(F("uniqueness") <= 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
other – a
ViewExpression
or a python primitive understood by MongoDB
- Returns
-
__lt__
(other)¶ Determines whether this expression is less than the given value or expression,
self <= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is < 0.5 view = dataset.match(F("uniqueness") < 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__ne__
(other)¶ Determines whether this expression is not equal to the given value or expression,
self != other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "cifar10", split="test", max_samples=500, shuffle=True ) # Get samples whose ground truth `label` is NOT "airplane" view = dataset.match(F("ground_truth.label") != "airplane") print("airplane" in view.distinct("ground_truth.label"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__and__
(other)¶ Computes the logical AND of this expression and the given value or expression,
self & other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions with label "cat" and confidence > 0.9 view = dataset.filter_labels( "predictions", (F("label") == "cat") & (F("confidence") > 0.9) ) print(view.count_values("predictions.detections.label")) print(view.bounds("predictions.detections.confidence"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__invert__
()¶ Inverts this expression,
~self
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a new field to one sample sample = dataset.first() sample["new_field"] = ["hello", "there"] sample.save() # Get samples that do NOT have a value for `new_field` view = dataset.match(~F("new_field").exists()) print(len(view))
- Returns
-
__or__
(other)¶ Computes the logical OR of this expression and the given value or expression,
self | other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions with label "cat" or confidence > 0.9 view = dataset.filter_labels( "predictions", (F("label") == "cat") | (F("confidence") > 0.9) ) print(view.count_values("predictions.detections.label")) print(view.bounds("predictions.detections.confidence"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__abs__
()¶ Computes the absolute value of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match(abs(F("uniqueness") - 0.5) < 0.25) print(view.bounds("uniqueness"))
- Returns
-
__add__
(other)¶ Adds the given value to this expression, which must resolve to a numeric value,
self + other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format manhattan_dist = F("bounding_box")[0] + F("bounding_box")[1] # Only contains predictions whose bounding boxes' upper left corner # is a Manhattan distance of at least 1 from the origin dataset.filter_labels("predictions, manhattan_dist > 1) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
other – a number or
ViewExpression
- Returns
-
__ceil__
()¶ Computes the ceiling of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match(math.ceil(F("uniqueness") + 0.5) == 2) print(view.bounds("uniqueness"))
- Returns
-
__floor__
()¶ Computes the floor of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match(math.floor(F("uniqueness") + 0.5) == 1) print(view.bounds("uniqueness"))
- Returns
-
__round__
(place=0)¶ Rounds this expression, which must resolve to a numeric value, at the given decimal place.
Positive values of
place
will round toplace
decimal places:place=2: 1234.5678 --> 1234.57
Negative values of
place
will round digits left of the decimal:place=-2: 1234.5678 --> 1200
- Parameters
place (0) – the decimal place at which to round. Must be an integer in range
(-20, 100)
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match(round(2 * F("uniqueness")) == 1) print(view.bounds("uniqueness"))
- Returns
-
__mod__
(other)¶ Computes the modulus of this expression, which must resolve to a numeric value,
self % other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with an even number of predictions view = dataset.match( (F("predictions.detections").length() % 2) == 0 ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
other – a number or
ViewExpression
- Returns
-
__mul__
(other)¶ Computes the product of the given value and this expression, which must resolve to a numeric value,
self * other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only contains predictions whose bounding box area is > 0.2 view = dataset.filter_labels("predictions", bbox_area > 0.2)
- Parameters
other – a number or
ViewExpression
- Returns
-
__pow__
(power, modulo=None)¶ Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5) ** 2 + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5) ** 2 ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Parameters
power – the power
- Returns
-
__sub__
(other)¶ Subtracts the given value from this expression, which must resolve to a numeric value,
self - other
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Bboxes are in [top-left-x, top-left-y, width, height] format rectangleness = abs( F("$metadata.width") * F("bounding_box")[2] - F("$metadata.height") * F("bounding_box")[3] ) # Only contains predictions whose bounding boxes are within 1 pixel # of being square view = ( dataset .select_fields("predictions") .filter_labels("predictions", rectangleness <= 1) ) session = fo.launch_app(view=view)
- Parameters
other – a number or
ViewExpression
- Returns
-
__truediv__
(other)¶ Divides this expression, which must resolve to a numeric value, by the given value,
self / other
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Bboxes are in [top-left-x, top-left-y, width, height] format aspect_ratio = ( (F("$metadata.width") * F("bounding_box")[2]) / (F("$metadata.height") * F("bounding_box")[3]) ) # Only contains predictions whose aspect ratio is > 2 view = ( dataset .select_fields("predictions") .filter_labels("predictions", aspect_ratio > 2) ) session = fo.launch_app(view=view)
- Parameters
other – a number or
ViewExpression
- Returns
-
__getitem__
(idx_or_slice)¶ Returns the element or slice of this expression, which must resolve to an array.
All of the typical slicing operations are supported, except for specifying a non-unit step:
expr[3] # the fourth element expr[-1] # the last element expr[:10] # the first (up to) 10 elements expr[-3:] # the last (up to) 3 elements expr[3:10] # the fourth through tenth elements
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only contains objects in the `predictions` field with area > 0.2 view = dataset.filter_labels("predictions", bbox_area > 0.2) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
idx_or_slice – the index or slice
- Returns
- Parameters
expr – the MongoDB expression
Attributes:
Whether this expression’s prefix is frozen.
Methods:
to_mongo
([prefix])Returns a MongoDB representation of the expression.
exists
([bool])Determines whether this expression, which must resolve to a field, exists and is not None.
abs
()Computes the absolute value of this expression, which must resolve to a numeric value.
floor
()Computes the floor of this expression, which must resolve to a numeric value.
ceil
()Computes the ceiling of this expression, which must resolve to a numeric value.
round
([place])Rounds this expression, which must resolve to a numeric value, at the given decimal place.
trunc
([place])Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
exp
()Raises Euler’s number to this expression, which must resolve to a numeric value.
ln
()Computes the natural logarithm of this expression, which must resolve to a numeric value.
log
(base)Computes the logarithm base
base
of this expression, which must resolve to a numeric value.log10
()Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
pow
(power)Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.sqrt
()Computes the square root of this expression, which must resolve to a numeric value.
cos
()Computes the cosine of this expression, which must resolve to a numeric value, in radians.
cosh
()Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
sin
()Computes the sine of this expression, which must resolve to a numeric value, in radians.
sinh
()Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
tan
()Computes the tangent of this expression, which must resolve to a numeric value, in radians.
tanh
()Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
arccos
()Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
arccosh
()Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
arcsin
()Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
arcsinh
()Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
arctan
()Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
arctanh
()Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
type
()Returns the type string of this expression.
is_null
()Determines whether this expression is null.
Determines whether this expression is a number.
Determines whether this expression is a string.
is_array
()Determines whether this expression is an array.
Determines whether this expression refers to a missing field.
is_in
(values)Creates an expression that returns a boolean indicating whether
self in values
.to_bool
()Converts the expression to a boolean value.
to_int
()Converts the expression to an integer value.
Converts the expression to a double precision value.
Converts the expression to a string value.
to_date
()Converts the expression to a date value.
apply
(expr)Applies the given expression to this expression.
if_else
(true_expr, false_expr)Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.cases
(mapping[, default])Applies a case statement to this expression, which effectively computes the following pseudocode.
switch
(mapping[, default])Applies a switch statement to this expression, which effectively computes the given pseudocode.
map_values
(mapping)Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
set_field
(field, value_or_expr[, relative])Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
let_in
(expr)Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
min
([value])Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
max
([value])Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
length
()Computes the length of this expression, which must resolve to an array.
contains
(values[, all])Checks whether this expression, which must resolve to an array, contains any of the given values.
is_subset
(values)Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
set_equals
(*args)Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
unique
()Returns an array containing the unique values in this expression, which must resolve to an array.
union
(*args)Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
intersection
(*args)Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
difference
(values)Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
reverse
()Reverses the order of the elements in the expression, which must resolve to an array.
sort
([key, numeric, reverse])Sorts this expression, which must resolve to an array.
filter
(expr)Applies the given filter to the elements of this expression, which must resolve to an array.
map
(expr)Applies the given expression to the elements of this expression, which must resolve to an array.
reduce
(expr[, init_val])Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
prepend
(value)Prepends the given value to this expression, which must resolve to an array.
append
(value)Appends the given value to this expression, which must resolve to an array.
insert
(index, value)Inserts the value before the given index in this expression, which must resolve to an array.
extend
(*args)Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
sum
()Returns the sum of the values in this expression, which must resolve to a numeric array.
mean
()Returns the average value in this expression, which must resolve to a numeric array.
std
([sample])Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
join
(delimiter)Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
substr
([start, end, count])Extracts the specified substring from this expression, which must resolve to a string.
strlen
()Computes the length of this expression, which must resolve to a string.
lower
()Converts this expression, which must resolve to a string, to lowercase.
upper
()Converts this expression, which must resolve to a string, to uppercase.
concat
(*args)Concatenates the given string(s) to this expression, which must resolve to a string.
strip
([chars])Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
lstrip
([chars])Removes whitespace characters from the beginning of this expression, which must resolve to a string.
rstrip
([chars])Removes whitespace characters from the end of this expression, which must resolve to a string.
replace
(old, new)Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.re_match
(regex[, options])Performs a regular expression pattern match on this expression, which must resolve to a string.
starts_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
ends_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
contains_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, contains the given string or string(s).
matches_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
split
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
rsplit
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
second
()Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
minute
()Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
hour
()Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
week
()Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
month
()Returns the month of this date expression (in UTC) as a number between 1 and 12.
year
()Returns the year of this date expression (in UTC).
literal
(value)Returns an expression representing the given value without parsing.
rand
()Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.randn
()Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
any
(exprs)Checks whether any of the given expressions evaluate to True.
all
(exprs)Checks whether all of the given expressions evaluate to True.
range
(start[, stop])Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
enumerate
(array[, start])Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.zip
(*args[, use_longest, defaults])Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
-
property
is_frozen
¶ Whether this expression’s prefix is frozen.
-
to_mongo
(prefix=None)¶ Returns a MongoDB representation of the expression.
- Parameters
prefix (None) – an optional prefix to prepend to all
ViewField
instances in the expression- Returns
a MongoDB expression
-
exists
(bool=True)¶ Determines whether this expression, which must resolve to a field, exists and is not None.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "quickstart", dataset_name=fo.get_default_dataset_name() ) # Add a new field to one sample sample = dataset.first() sample["new_field"] = ["hello", "there"] sample.save() # Get samples that have a value for `new_field` view = dataset.match(F("new_field").exists()) print(len(view))
- Parameters
bool (True) – whether to determine whether this expression exists (True) or is None or non-existent (False)
- Returns
-
abs
()¶ Computes the absolute value of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((F("uniqueness") - 0.5).abs() < 0.25) print(view.bounds("uniqueness"))
- Returns
-
floor
()¶ Computes the floor of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).floor() == 1) print(view.bounds("uniqueness"))
- Returns
-
ceil
()¶ Computes the ceiling of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).ceil() == 2) print(view.bounds("uniqueness"))
- Returns
-
round
(place=0)¶ Rounds this expression, which must resolve to a numeric value, at the given decimal place.
Positive values of
place
will round toplace
decimal places:place=2: 1234.5678 --> 1234.57
Negative values of
place
will roundplace
digits left of the decimal:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((2 * F("uniqueness")).round() == 1) print(view.bounds("uniqueness"))
- Parameters
place (0) – the decimal place at which to round. Must be an integer in range
(-20, 100)
- Returns
-
trunc
(place=0)¶ Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
Positive values of
place
will truncate toplace
decimal places:place=2: 1234.5678 --> 1234.56
Negative values of
place
will replaceplace
digits left of the decimal with zero:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Only contains samples whose height is in [500, 600) pixels view = dataset.match(F("metadata.height").trunc(-2) == 500) print(view.bounds("metadata.height"))
- Parameters
place (0) – the decimal place at which to truncate
- Returns
-
exp
()¶ Raises Euler’s number to this expression, which must resolve to a numeric value.
- Returns
-
ln
()¶ Computes the natural logarithm of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").ln() >= math.log(0.5)) print(view.bounds("uniqueness"))
- Returns
-
log
(base)¶ Computes the logarithm base
base
of this expression, which must resolve to a numeric value.Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log(2) >= math.log2(0.5)) print(view.bounds("uniqueness"))
- Parameters
base – the logarithm base
- Returns
-
log10
()¶ Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log10() >= math.log10(0.5)) print(view.bounds("uniqueness"))
- Returns
-
pow
(power)¶ Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5).pow(2) + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5).pow(2) ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Parameters
power – the power
- Returns
-
sqrt
()¶ Computes the square root of this expression, which must resolve to a numeric value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5) ** 2 + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5) ** 2 ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Returns
-
cos
()¶ Computes the cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cos()` view = dataset.match(F("uniqueness").cos() <= np.cos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
cosh
()¶ Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cosh()` view = dataset.match(F("uniqueness").cosh() >= np.cosh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sin
()¶ Computes the sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sin()` view = dataset.match(F("uniqueness").sin() >= np.sin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sinh
()¶ Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sinh()` view = dataset.match(F("uniqueness").sinh() >= np.sinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
tan
()¶ Computes the tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tan()` view = dataset.match(F("uniqueness").tan() >= np.tan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
tanh
()¶ Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tanh()` view = dataset.match(F("uniqueness").tanh() >= np.tanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arccos
()¶ Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccos()` view = dataset.match(F("uniqueness").arccos() <= np.arccos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arccosh
()¶ Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccosh()` view = dataset.match((1 + F("uniqueness")).arccosh() >= np.arccosh(1.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsin
()¶ Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsin()` view = dataset.match(F("uniqueness").arcsin() >= np.arcsin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsinh
()¶ Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsinh()` view = dataset.match(F("uniqueness").arcsinh() >= np.arcsinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctan
()¶ Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctan()` view = dataset.match(F("uniqueness").arctan() >= np.arctan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctanh
()¶ Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctanh()` view = dataset.match(F("uniqueness").arctanh() >= np.arctanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
type
()¶ Returns the type string of this expression.
See this page for more details.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Create a view that only contains samples with non-None uniqueness unique_only_view = view.match(F("uniqueness").type() != "null") print(len(unique_only_view))
- Returns
-
is_null
()¶ Determines whether this expression is null.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness = None not_unique_view = view.match(F("uniqueness").is_null()) print(len(not_unique_view))
- Returns
-
is_number
()¶ Determines whether this expression is a number.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness values has_unique_view = view.match(F("uniqueness").is_number()) print(len(has_unique_view))
- Returns
-
is_string
()¶ Determines whether this expression is a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that filepaths are strings view = dataset.match(F("filepath").is_string()) print(len(view))
- Returns
-
is_array
()¶ Determines whether this expression is an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that tags are arrays view = dataset.match(F("tags").is_array()) print(len(view))
- Returns
-
is_missing
()¶ Determines whether this expression refers to a missing field.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that `foobar` is a non-existent field on all samples view = dataset.match(F("foobar").is_missing()) print(len(view) == len(dataset))
- Returns
-
is_in
(values)¶ Creates an expression that returns a boolean indicating whether
self in values
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains animal predictions view = dataset.filter_labels( "predictions", F("label").is_in(ANIMALS) ) print(view.count_values("predictions.detections.label"))
- Parameters
values – a value or iterable of values
- Returns
-
to_bool
()¶ Converts the expression to a boolean value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_bool` field that is False when # `uniqueness < 0.5` and True when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_bool", fo.BooleanField) view = dataset.set_field( "uniqueness_bool", (2.0 * F("uniqueness")).floor().to_bool() ) print(view.count_values("uniqueness_bool"))
- Returns
-
to_int
()¶ Converts the expression to an integer value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_int` field that contains the value of the # first decimal point of the `uniqueness` field dataset.add_sample_field("uniqueness_int", fo.IntField) view = dataset.set_field( "uniqueness_int", (10.0 * F("uniqueness")).floor().to_int() ) print(view.count_values("uniqueness_int"))
- Returns
-
to_double
()¶ Converts the expression to a double precision value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_float` field that is 0.0 when # `uniqueness < 0.5` and 1.0 when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_float", fo.FloatField) view = dataset.set_field( "uniqueness_float", (F("uniqueness") >= 0.5).to_double() ) print(view.count_values("uniqueness_float"))
See this page for conversion rules.
- Returns
-
to_string
()¶ Converts the expression to a string value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_str` field that is "true" when # `uniqueness >= 0.5` and "false" when `uniqueness < 0.5` dataset.add_sample_field("uniqueness_str", fo.StringField) view = dataset.set_field( "uniqueness_str", (F("uniqueness") >= 0.5).to_string() ) print(view.count_values("uniqueness_str"))
- Returns
-
to_date
()¶ Converts the expression to a date value.
See this page for conversion rules.
Examples:
from datetime import datetime import pytz import fiftyone as fo from fiftyone import ViewField as F now = datetime.utcnow().replace(tzinfo=pytz.utc) sample = fo.Sample( filepath="image.png", date_ms=1000 * now.timestamp(), date_str=now.isoformat(), ) dataset = fo.Dataset() dataset.add_sample(sample) # Convert string/millisecond representations into datetimes dataset.add_sample_field("date1", fo.DateTimeField) dataset.add_sample_field("date2", fo.DateTimeField) ( dataset .set_field("date1", F("date_ms").to_date()) .set_field("date2", F("date_str").to_date()) .save() ) print(dataset.first())
- Returns
-
apply
(expr)¶ Applies the given expression to this expression.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples with `uniqueness` in [0.25, 0.75] view = dataset.match( F("uniqueness").apply((F() > 0.25) & (F() < 0.75)) ) print(view.bounds("uniqueness"))
- Parameters
expr – a
ViewExpression
- Returns
-
if_else
(true_expr, false_expr)¶ Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) print(view.bounds("uniqueness"))
- Parameters
true_expr – a
ViewExpression
or MongoDB expression dictfalse_expr – a
ViewExpression
or MongoDB expression dict
- Returns
-
cases
(mapping, default=None)¶ Applies a case statement to this expression, which effectively computes the following pseudocode:
for key, value in mapping.items(): if self == key: return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Map numeric `uniqueness` values to 1 and null values to 0 cases_view = view.set_field( "uniqueness", F("uniqueness").type().cases({"double": 1, "null": 0}), ) print(cases_view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping literals or
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
switch
(mapping, default=None)¶ Applies a switch statement to this expression, which effectively computes the given pseudocode:
for key, value in mapping.items(): if self.apply(key): return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Round `uniqueness` values to either 0.25 or 0.75 view = dataset.set_field( "uniqueness", F("uniqueness").switch( { (0.0 < F()) & (F() <= 0.5): 0.25, (0.5 < F()) & (F() <= 1.0): 0.75, }, ) ) print(view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping boolean
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
map_values
(mapping)¶ Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # # Replace the `label` of all animal objects in the `predictions` # field with "animal" # mapping = {a: "animal" for a in ANIMALS} view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field("label", F("label").map_values(mapping)) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
mapping – a dict mapping keys to replacement values
- Returns
-
set_field
(field, value_or_expr, relative=True)¶ Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
By default, the provided expression is computed by applying it to this expression via
self.apply(value_or_expr)
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Replaces the `label` attributes of the objects in the # `predictions` field according to the following rule: # # If the `label` starts with `b`, replace it with `b`. Otherwise, # replace it with "other" # view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field( "label", F("label").re_match("^b").if_else("b", "other"), ) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
field – the “field” or “embedded.field.name” to set
value_or_expr – a literal value or
ViewExpression
defining the field to setrelative (True) – whether to compute
value_or_expr
by applying it to this expression (True), or to use it untouched (False)
- Returns
-
let_in
(expr)¶ Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
This method is useful when
expr
contains multiple instances of this expression, since it avoids duplicate computation of this expression in the final pipeline.If
expr
is a simple expression such as aViewField
, no variable is defined andexpr
is directly returned.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] good_bboxes = (bbox_area > 0.25) & (bbox_area < 0.75) # Optimize the expression good_bboxes_opt = bbox_area.let_in(good_bboxes) # Contains predictions whose bounding box areas are in [0.25, 0.75] view = dataset.filter_labels("predictions", good_bboxes_opt) print(good_bboxes) print(good_bboxes_opt) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
expr – a
ViewExpression
- Returns
-
min
(value=None)¶ Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `min_area` property to the `predictions` field that # records the minimum prediction area in that sample view = dataset.set_field( "predictions.min_area", F("detections").map(bbox_area).min() ) print(view.bounds("predictions.min_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
max
(value=None)¶ Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `max_area` property to the `predictions` field that # records the maximum prediction area in that sample view = dataset.set_field( "predictions.max_area", F("detections").map(bbox_area).max() ) print(view.bounds("predictions.max_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
length
()¶ Computes the length of this expression, which must resolve to an array.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with at least 15 predicted objects view = dataset.match(F("predictions.detections").length() >= 15) print(dataset.count()) print(view.count())
- Returns
-
contains
(values, all=False)¶ Checks whether this expression, which must resolve to an array, contains any of the given values.
Pass
all=True
to require that this expression contains all of the given values.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") print(dataset.count()) # Only contains samples with a "cat" prediction view = dataset.match( F("predictions.detections.label").contains("cat") ) print(view.count()) # Only contains samples with "cat" or "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"]) ) print(view.count()) # Only contains samples with "cat" and "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"], all=True) ) print(view.count())
- Parameters
values – a value, iterable of values, or
ViewExpression
that resolves to an array of valuesall (False) – whether this expression must contain all (True) or any (False) of the given values
- Returns
-
is_subset
(values)¶ Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
The arrays are treated as sets, so duplicate values are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "c"], ) ] ) print(dataset.values(F("tags").is_subset(F("other_tags")))) # [True]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
set_equals
(*args)¶ Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "b"], ) ] ) print(dataset.values(F("tags").set_equals(F("other_tags")))) # [True]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
unique
()¶ Returns an array containing the unique values in this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], ) ] ) print(dataset.values(F("tags").unique())) # [['a', 'b']]
- Returns
-
union
(*args)¶ Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").union(F("other_tags")))) # [['a', 'b', 'c']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
intersection
(*args)¶ Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").intersection(F("other_tags")))) # [['a']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
difference
(values)¶ Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").difference(F("other_tags")))) # [['b']]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
reverse
()¶ Reverses the order of the elements in the expression, which must resolve to an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") first_obj = F("predictions.detections")[0] last_obj = F("predictions.detections").reverse()[0] # Only contains samples whose first and last prediction have the # same label view = dataset.match( first_obj.apply(F("label")) == last_obj.apply(F("label")) ) print(dataset.count()) print(view.count())
- Returns
-
sort
(key=None, numeric=False, reverse=False)¶ Sorts this expression, which must resolve to an array.
If no
key
is provided, this array must contain elements whose BSON representation can be sorted by JavaScript’s.sort()
method.If a
key
is provided, the array must contain documents, which are sorted bykey
, which must be a field or embedded field.Examples:
# # Sort the tags of each sample in a dataset # import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="im1.jpg", tags=["z", "f", "p", "a"]), fo.Sample(filepath="im2.jpg", tags=["y", "q", "h", "d"]), fo.Sample(filepath="im3.jpg", tags=["w", "c", "v", "l"]), ] ) # Sort the `tags` of each sample view = dataset.set_field("tags", F("tags").sort()) print(view.first().tags) # # Sort the predictions in each sample of a dataset by `confidence` # import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") view = dataset.set_field( "predictions.detections", F("detections").sort(key="confidence", numeric=True, reverse=True) ) sample = view.first() print(sample.predictions.detections[0].confidence) print(sample.predictions.detections[-1].confidence)
- Parameters
key (None) – an optional field or
embedded.field.name
to sort bynumeric (False) – whether the array contains numeric values. By default, the values will be sorted alphabetically by their string representations
reverse (False) – whether to sort in descending order
- Returns
-
filter
(expr)¶ Applies the given filter to the elements of this expression, which must resolve to an array.
The output array will only contain elements of the input array for which
expr
returnsTrue
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").filter(F("confidence") > 0.9) ) print(view.bounds("predictions.detections.confidence"))
- Parameters
expr – a
ViewExpression
that returns a boolean- Returns
-
map
(expr)¶ Applies the given expression to the elements of this expression, which must resolve to an array.
The output will be an array with the applied results.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").map(F().set_field("area", bbox_area)) ) print(view.bounds("predictions.detections.area"))
- Parameters
expr – a
ViewExpression
- Returns
-
reduce
(expr, init_val=0)¶ Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
The provided
expr
must include theVALUE
expression to properly define the reduction.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F from fiftyone.core.expressions import VALUE # # Compute the number of keypoints in each sample of a dataset # dataset = fo.Dataset() dataset.add_sample( fo.Sample( filepath="image.jpg", keypoints=fo.Keypoints( keypoints=[ fo.Keypoint(points=[(0, 0), (1, 1)]), fo.Keypoint(points=[(0, 0), (1, 0), (1, 1), (0, 1)]), ] ) ) ) view = dataset.set_field( "keypoints.count", F("$keypoints.keypoints").reduce(VALUE + F("points").length()), ) print(view.first().keypoints.count) # # Generate a `list,of,labels` for the `predictions` of each sample # dataset = foz.load_zoo_dataset("quickstart") join_labels = F("detections").reduce( VALUE.concat(",", F("label")), init_val="" ).lstrip(",") view = dataset.set_field("predictions.labels", join_labels) print(view.first().predictions.labels)
- Parameters
expr – a
ViewExpression
defining the reduction expression to apply. Must contain theVALUE
expressioninit_val (0) – an initial value for the reduction
- Returns
-
prepend
(value)¶ Prepends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["b", "c"]), fo.Sample(filepath="image2.jpg", tags=["b", "c"]), ] ) # Adds the "a" tag to each sample view = dataset.set_field("tags", F("tags").prepend("a")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
append
(value)¶ Appends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Appends the "c" tag to each sample view = dataset.set_field("tags", F("tags").append("c")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
insert
(index, value)¶ Inserts the value before the given index in this expression, which must resolve to an array.
If
index <= 0
, the value is prepended to this array. Ifindex >= self.length()
, the value is appended to this array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "c"]), fo.Sample(filepath="image2.jpg", tags=["a", "c"]), ] ) # Adds the "ready" tag to each sample view = dataset.set_field("tags", F("tags").insert(1, "b")) print(view.first().tags)
- Parameters
index – the index at which to insert the value
value – the value or
ViewExpression
- Returns
-
extend
(*args)¶ Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Adds the "c" and "d" tags to each sample view = dataset.set_field("tags", F("tags").extend(["c", "d"])) print(view.first().tags)
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
sum
()¶ Returns the sum of the values in this expression, which must resolve to a numeric array.
Missing, non-numeric, or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the total # confidence of the predictions view = dataset.set_field( "predictions.total_conf", F("detections").map(F("confidence")).sum() ) print(view.bounds("predictions.total_conf"))
- Returns
-
mean
()¶ Returns the average value in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the average # confidence of the predictions view = dataset.set_field( "predictions.conf_mean", F("detections").map(F("confidence")).mean() ) print(view.bounds("predictions.conf_mean"))
- Returns
-
std
(sample=False)¶ Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.By default, the population standard deviation is returned. If you wish to compute the sample standard deviation instead, set
sample=True
.See https://en.wikipedia.org/wiki/Standard_deviation#Estimation for more information on population (biased) vs sample (unbiased) standard deviation.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the # standard deviation of the confidences view = dataset.set_field( "predictions.conf_std", F("detections").map(F("confidence")).std() ) print(view.bounds("predictions.conf_std"))
- Parameters
sample (False) – whether to compute the sample standard deviation rather than the population standard deviation
- Returns
-
join
(delimiter)¶ Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Generate a `list,of,labels` for the `predictions` of each sample view = dataset.set_field( "predictions.labels", F("detections").map(F("label")).join(",") ) print(view.first().predictions.labels)
- Parameters
delimiter – the delimiter string
- Returns
-
substr
(start=None, end=None, count=None)¶ Extracts the specified substring from this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Truncate the `label` of each prediction to 3 characters truncate_label = F().set_field("label", F("label").substr(count=3)) view = dataset.set_field( "predictions.detections", F("detections").map(truncate_label), ) print(view.distinct("predictions.detections.label"))
- Parameters
start (None) – the starting index of the substring. If negative, specifies an offset from the end of the string
end (None) – the ending index of the substring. If negative, specifies an offset from the end of the string
count (None) – the substring length to extract. If
None
, the rest of the string is returned
- Returns
-
strlen
()¶ Computes the length of this expression, which must resolve to a string.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Records the length of each predicted object's `label` label_len = F().set_field("label_len", F("label").strlen()) view = dataset.set_field( "predictions.detections", F("detections").map(label_len), ) print(view.bounds("predictions.detections.label_len"))
- Returns
-
lower
()¶ Converts this expression, which must resolve to a string, to lowercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to lowercase transform_tag = F().lower() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
upper
()¶ Converts this expression, which must resolve to a string, to uppercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to uppercase transform_tag = F().upper() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
concat
(*args)¶ Concatenates the given string(s) to this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Appends "-tag" to all tags transform_tag = F().concat("-tag") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
*args – one or more strings or string
ViewExpression
instancesbefore (False) – whether to position
args
before this string in the output string
- Returns
-
strip
(chars=None)¶ Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from each tag transform_tag = E(" ").concat(F(), " ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
lstrip
(chars=None)¶ Removes whitespace characters from the beginning of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the beginning of each tag transform_tag = E(" ").concat(F()).lstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
rstrip
(chars=None)¶ Removes whitespace characters from the end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the end of each tag transform_tag = F().concat(" ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
replace
(old, new)¶ Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Replaces "val" with "VAL" in each tag transform_tag = F().replace("val", "VAL") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
old – a string or
ViewExpression
resolving to a string expression specifying the substring to replacenew – a string or
ViewExpression
resolving to a string expression specifying the replacement value
- Returns
-
re_match
(regex, options=None)¶ Performs a regular expression pattern match on this expression, which must resolve to a string.
The output of the expression will be
True
if the pattern matches andFalse
otherwise.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Get samples whose images are JPEGs # view = dataset.match(F("filepath").re_match("\.jpg$")) print(view.count()) print(view.first().filepath) # # Get samples whose images are in the "/Users" directory # view = dataset.match(F("filepath").re_match("^/Users/")) print(view.count()) print(view.first().filepath)
- Parameters
- Returns
-
starts_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are in "/Users" or "/home" directories view = dataset.match(F("filepath").starts_with(("/Users", "/home")) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
ends_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are JPEGs or PNGs view = dataset.match(F("filepath").ends_with((".jpg", ".png"))) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
contains_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, contains the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` contains "be" view = dataset.filter_labels( "predictions", F("label").contains_str("be") ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
matches_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` is "cat" or "dog", case # insensitive view = dataset.map_labels( "predictions", {"cat": "CAT", "dog": "DOG"} ).filter_labels( "predictions", F("label").matches_str(("cat", "dog"), case_sensitive=False) ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
split
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-good" to the first tag and then split on "-" to create two # tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-good").split("-") ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the left
- Returns
-
rsplit
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
If the number of chunks exceeds
maxsplit
, splits are only performed on the lastmaxsplit
occurrences of the delimiter.The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-ok-go" to the first tag and then split once on "-" from the # right to create two tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-ok-go").rsplit("-", 1) ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the right
- Returns
-
millisecond
()¶ Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 1000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 2000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 3000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 4000), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the millisecond portion of the dates in the dataset print(dataset.values(F("created_at").millisecond())) # Samples with even milliseconds view = dataset.match(F("created_at").millisecond() % 2 == 0) print(len(view))
- Returns
-
second
()¶ Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the second portion of the dates in the dataset print(dataset.values(F("created_at").second())) # Samples with even seconds view = dataset.match(F("created_at").second() % 2 == 0) print(len(view))
- Returns
-
minute
()¶ Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the minute portion of the dates in the dataset print(dataset.values(F("created_at").minute())) # Samples with even minutes view = dataset.match(F("created_at").minute() % 2 == 0) print(len(view))
- Returns
-
hour
()¶ Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the hour portion of the dates in the dataset print(dataset.values(F("created_at").hour())) # Samples with even hours view = dataset.match(F("created_at").hour() % 2 == 0) print(len(view))
- Returns
-
day_of_week
()¶ Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 5), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 6), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 7), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the week for the dataset print(dataset.values(F("created_at").day_of_week())) # Samples with even days of the week view = dataset.match(F("created_at").day_of_week() % 2 == 0) print(len(view))
- Returns
-
day_of_month
()¶ Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the month for the dataset print(dataset.values(F("created_at").day_of_month())) # Samples with even days of the month view = dataset.match(F("created_at").day_of_month() % 2 == 0) print(len(view))
- Returns
-
day_of_year
()¶ Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the year for the dataset print(dataset.values(F("created_at").day_of_year())) # Samples with even days of the year view = dataset.match(F("created_at").day_of_year() % 2 == 0) print(len(view))
- Returns
-
week
()¶ Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the weeks of the year for the dataset print(dataset.values(F("created_at").week())) # Samples with even months of the week view = dataset.match(F("created_at").week() % 2 == 0) print(len(view))
- Returns
-
month
()¶ Returns the month of this date expression (in UTC) as a number between 1 and 12.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the months of the year for the dataset print(dataset.values(F("created_at").month())) # Samples from even months of the year view = dataset.match(F("created_at").month() % 2 == 0) print(len(view))
- Returns
-
year
()¶ Returns the year of this date expression (in UTC).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1971, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1972, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1973, 1, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the years for the dataset print(dataset.values(F("created_at").year())) # Samples from even years view = dataset.match(F("created_at").year() % 2 == 0) print(len(view))
- Returns
-
static
literal
(value)¶ Returns an expression representing the given value without parsing.
See this page for more information on when this method is required.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add the "$money" tag to each sample # The "$" character ordinarily has special meaning, so we must wrap # it in `literal()` in order to add it via this method view = dataset.set_field( "tags", F("tags").append(F.literal("$money")) ) print(view.first().tags)
- Parameters
value – a value
- Returns
-
static
rand
()¶ Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `rand` field with random numbers # dataset.add_sample_field("rand", fo.FloatField) dataset.set_field("rand", E.rand()).save("rand") print(dataset.bounds("rand")) # # Create a view that contains a different 10%% of the dataset each # time it is used # view = dataset.match(E.rand() < 0.1) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
randn
()¶ Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `randn` field with random numbers # dataset.add_sample_field("randn", fo.FloatField) dataset.set_field("randn", E.randn()).save("randn") print(dataset.bounds("randn")) # # Create a view that contains a different 50%% of the dataset each # time it is used # view = dataset.match(E.randn() < 0) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
any
(exprs)¶ Checks whether any of the given expressions evaluate to True.
If no expressions are provided, returns False.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" or # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.any([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
static
all
(exprs)¶ Checks whether all of the given expressions evaluate to True.
If no expressions are provided, returns True.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" and # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.all([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
static
range
(start, stop=None)¶ Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
If
stop
is provided, returns[start, start + 1, ..., stop - 1]
.If no
stop
is provided, returns[0, 1, ..., start - 1]
.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `ints` field based on the number of `tags` dataset.add_sample_field("ints", fo.ListField) view = dataset.set_field("ints", F.range(F("tags").length())) print(view.first())
- Parameters
start – the starting value, or stopping value if no
stop
is providedstop (None) – the stopping value, if both input arguments are provided
- Returns
-
static
enumerate
(array, start=0)¶ Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `enumerated_tags` field with the enumerated `tag` dataset.add_sample_field("enumerated_tags", fo.ListField) view = dataset.set_field("enumerated_tags", F.enumerate(F("tags"))) print(view.first())
- Parameters
array – a
ViewExpression
that resolves to an arraystart (0) – the starting enumeration index to use
- Returns
-
static
zip
(*args, use_longest=False, defaults=None)¶ Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "c"], ints=[1, 2, 3, 4, 5], ), fo.Sample( filepath="image2.jpg", tags=["y", "z"], ints=[25, 26, 27, 28], ), ] ) dataset.add_sample_field("tags_ints", fo.ListField) # Populates an `tags_ints` field with the zipped `tags` and `ints` view = dataset.set_field("tags_ints", F.zip(F("tags"), F("ints"))) print(view.first()) # Same as above but use the longest array to determine output size view = dataset.set_field( "tags_ints", F.zip(F("tags"), F("ints"), use_longest=True, defaults=("", 0)) ) print(view.first())
- Parameters
*args – one or more arrays or
ViewExpression
instances resolving to arraysuse_longest (False) – whether to use the longest array to determine the number of elements in the output array. By default, the length of the shortest array is used
defaults (None) – an optional array of default values of same length as
*args
to use whenuse_longest == True
and the input arrays are of different lengths. If no defaults are provided anduse_longest == True
, then missing values are set toNone
- Returns
-
-
class
fiftyone.core.expressions.
ViewField
(name=None)¶ Bases:
fiftyone.core.expressions.ViewExpression
A
ViewExpression
that refers to a field or embedded field of a document.You can use dot notation to refer to subfields of embedded objects within fields.
When you create a
ViewField
using a string field likeViewField("embedded.field.name")
, the meaning of this field is interpreted relative to the context in which theViewField
object is used. For example, when passed to theViewExpression.map()
method, this object will refer to theembedded.field.name
object of the array element being processed.In other cases, you may wish to create a
ViewField
that always refers to the root document. You can do this by prepending"$"
to the name of the field, as inViewField("$embedded.field.name")
.Examples:
from fiftyone import ViewField as F # Reference the root of the current context F() # Reference the `ground_truth` field in the current context F("ground_truth") # Reference the `label` field of the `ground_truth` object in the # current context F("ground_truth.label") # Reference the root document in any context F("$") # Reference the `label` field of the root document in any context F("$label") # Reference the `label` field of the `ground_truth` object in the root # document in any context F("$ground_truth.label")
-
__eq__
(other)¶ Determines whether this expression is equal to the given value or expression,
self == other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "cifar10", split="test", max_samples=500, shuffle=True ) # Get samples whose ground truth `label` is "airplane" view = dataset.match(F("ground_truth.label") == "airplane") print(view.distinct("ground_truth.label"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__ge__
(other)¶ Determines whether this expression is greater than or equal to the given value or expression,
self >= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness") >= 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__gt__
(other)¶ Determines whether this expression is greater than the given value or expression,
self >= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is > 0.5 view = dataset.match(F("uniqueness") > 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__le__
(other)¶ Determines whether this expression is less than or equal to the given value or expression,
self <= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is <= 0.5 view = dataset.match(F("uniqueness") <= 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
other – a
ViewExpression
or a python primitive understood by MongoDB
- Returns
-
__lt__
(other)¶ Determines whether this expression is less than the given value or expression,
self <= other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is < 0.5 view = dataset.match(F("uniqueness") < 0.5) print(view.bounds("uniqueness"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__ne__
(other)¶ Determines whether this expression is not equal to the given value or expression,
self != other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "cifar10", split="test", max_samples=500, shuffle=True ) # Get samples whose ground truth `label` is NOT "airplane" view = dataset.match(F("ground_truth.label") != "airplane") print("airplane" in view.distinct("ground_truth.label"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__and__
(other)¶ Computes the logical AND of this expression and the given value or expression,
self & other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions with label "cat" and confidence > 0.9 view = dataset.filter_labels( "predictions", (F("label") == "cat") & (F("confidence") > 0.9) ) print(view.count_values("predictions.detections.label")) print(view.bounds("predictions.detections.confidence"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__invert__
()¶ Inverts this expression,
~self
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a new field to one sample sample = dataset.first() sample["new_field"] = ["hello", "there"] sample.save() # Get samples that do NOT have a value for `new_field` view = dataset.match(~F("new_field").exists()) print(len(view))
- Returns
-
__or__
(other)¶ Computes the logical OR of this expression and the given value or expression,
self | other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions with label "cat" or confidence > 0.9 view = dataset.filter_labels( "predictions", (F("label") == "cat") | (F("confidence") > 0.9) ) print(view.count_values("predictions.detections.label")) print(view.bounds("predictions.detections.confidence"))
- Parameters
other – a literal value or
ViewExpression
- Returns
-
__abs__
()¶ Computes the absolute value of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match(abs(F("uniqueness") - 0.5) < 0.25) print(view.bounds("uniqueness"))
- Returns
-
__add__
(other)¶ Adds the given value to this expression, which must resolve to a numeric value,
self + other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format manhattan_dist = F("bounding_box")[0] + F("bounding_box")[1] # Only contains predictions whose bounding boxes' upper left corner # is a Manhattan distance of at least 1 from the origin dataset.filter_labels("predictions, manhattan_dist > 1) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
other – a number or
ViewExpression
- Returns
-
__ceil__
()¶ Computes the ceiling of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match(math.ceil(F("uniqueness") + 0.5) == 2) print(view.bounds("uniqueness"))
- Returns
-
__floor__
()¶ Computes the floor of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match(math.floor(F("uniqueness") + 0.5) == 1) print(view.bounds("uniqueness"))
- Returns
-
__round__
(place=0)¶ Rounds this expression, which must resolve to a numeric value, at the given decimal place.
Positive values of
place
will round toplace
decimal places:place=2: 1234.5678 --> 1234.57
Negative values of
place
will round digits left of the decimal:place=-2: 1234.5678 --> 1200
- Parameters
place (0) – the decimal place at which to round. Must be an integer in range
(-20, 100)
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match(round(2 * F("uniqueness")) == 1) print(view.bounds("uniqueness"))
- Returns
-
__mod__
(other)¶ Computes the modulus of this expression, which must resolve to a numeric value,
self % other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with an even number of predictions view = dataset.match( (F("predictions.detections").length() % 2) == 0 ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
other – a number or
ViewExpression
- Returns
-
__mul__
(other)¶ Computes the product of the given value and this expression, which must resolve to a numeric value,
self * other
.Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only contains predictions whose bounding box area is > 0.2 view = dataset.filter_labels("predictions", bbox_area > 0.2)
- Parameters
other – a number or
ViewExpression
- Returns
-
__pow__
(power, modulo=None)¶ Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5) ** 2 + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5) ** 2 ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Parameters
power – the power
- Returns
-
__sub__
(other)¶ Subtracts the given value from this expression, which must resolve to a numeric value,
self - other
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Bboxes are in [top-left-x, top-left-y, width, height] format rectangleness = abs( F("$metadata.width") * F("bounding_box")[2] - F("$metadata.height") * F("bounding_box")[3] ) # Only contains predictions whose bounding boxes are within 1 pixel # of being square view = ( dataset .select_fields("predictions") .filter_labels("predictions", rectangleness <= 1) ) session = fo.launch_app(view=view)
- Parameters
other – a number or
ViewExpression
- Returns
-
__truediv__
(other)¶ Divides this expression, which must resolve to a numeric value, by the given value,
self / other
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Bboxes are in [top-left-x, top-left-y, width, height] format aspect_ratio = ( (F("$metadata.width") * F("bounding_box")[2]) / (F("$metadata.height") * F("bounding_box")[3]) ) # Only contains predictions whose aspect ratio is > 2 view = ( dataset .select_fields("predictions") .filter_labels("predictions", aspect_ratio > 2) ) session = fo.launch_app(view=view)
- Parameters
other – a number or
ViewExpression
- Returns
-
__getitem__
(idx_or_slice)¶ Returns the element or slice of this expression, which must resolve to an array.
All of the typical slicing operations are supported, except for specifying a non-unit step:
expr[3] # the fourth element expr[-1] # the last element expr[:10] # the first (up to) 10 elements expr[-3:] # the last (up to) 3 elements expr[3:10] # the fourth through tenth elements
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only contains objects in the `predictions` field with area > 0.2 view = dataset.filter_labels("predictions", bbox_area > 0.2) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
idx_or_slice – the index or slice
- Returns
- Parameters
name (None) – the name of the field, with an optional “$” prepended if you wish to freeze this field to the root document
Methods:
to_mongo
([prefix])Returns a MongoDB representation of the field.
abs
()Computes the absolute value of this expression, which must resolve to a numeric value.
all
(exprs)Checks whether all of the given expressions evaluate to True.
any
(exprs)Checks whether any of the given expressions evaluate to True.
append
(value)Appends the given value to this expression, which must resolve to an array.
apply
(expr)Applies the given expression to this expression.
arccos
()Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
arccosh
()Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
arcsin
()Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
arcsinh
()Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
arctan
()Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
arctanh
()Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
cases
(mapping[, default])Applies a case statement to this expression, which effectively computes the following pseudocode.
ceil
()Computes the ceiling of this expression, which must resolve to a numeric value.
concat
(*args)Concatenates the given string(s) to this expression, which must resolve to a string.
contains
(values[, all])Checks whether this expression, which must resolve to an array, contains any of the given values.
contains_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, contains the given string or string(s).
cos
()Computes the cosine of this expression, which must resolve to a numeric value, in radians.
cosh
()Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
difference
(values)Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
ends_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
enumerate
(array[, start])Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.exists
([bool])Determines whether this expression, which must resolve to a field, exists and is not None.
exp
()Raises Euler’s number to this expression, which must resolve to a numeric value.
extend
(*args)Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
filter
(expr)Applies the given filter to the elements of this expression, which must resolve to an array.
floor
()Computes the floor of this expression, which must resolve to a numeric value.
hour
()Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
if_else
(true_expr, false_expr)Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.insert
(index, value)Inserts the value before the given index in this expression, which must resolve to an array.
intersection
(*args)Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
is_array
()Determines whether this expression is an array.
is_in
(values)Creates an expression that returns a boolean indicating whether
self in values
.Determines whether this expression refers to a missing field.
is_null
()Determines whether this expression is null.
Determines whether this expression is a number.
Determines whether this expression is a string.
is_subset
(values)Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
join
(delimiter)Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
length
()Computes the length of this expression, which must resolve to an array.
let_in
(expr)Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
literal
(value)Returns an expression representing the given value without parsing.
ln
()Computes the natural logarithm of this expression, which must resolve to a numeric value.
log
(base)Computes the logarithm base
base
of this expression, which must resolve to a numeric value.log10
()Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
lower
()Converts this expression, which must resolve to a string, to lowercase.
lstrip
([chars])Removes whitespace characters from the beginning of this expression, which must resolve to a string.
map
(expr)Applies the given expression to the elements of this expression, which must resolve to an array.
map_values
(mapping)Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
matches_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
max
([value])Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
mean
()Returns the average value in this expression, which must resolve to a numeric array.
Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
min
([value])Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
minute
()Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
month
()Returns the month of this date expression (in UTC) as a number between 1 and 12.
pow
(power)Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.prepend
(value)Prepends the given value to this expression, which must resolve to an array.
rand
()Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.randn
()Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
range
(start[, stop])Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
re_match
(regex[, options])Performs a regular expression pattern match on this expression, which must resolve to a string.
reduce
(expr[, init_val])Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
replace
(old, new)Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.reverse
()Reverses the order of the elements in the expression, which must resolve to an array.
round
([place])Rounds this expression, which must resolve to a numeric value, at the given decimal place.
rsplit
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
rstrip
([chars])Removes whitespace characters from the end of this expression, which must resolve to a string.
second
()Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
set_equals
(*args)Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
set_field
(field, value_or_expr[, relative])Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
sin
()Computes the sine of this expression, which must resolve to a numeric value, in radians.
sinh
()Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
sort
([key, numeric, reverse])Sorts this expression, which must resolve to an array.
split
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
sqrt
()Computes the square root of this expression, which must resolve to a numeric value.
starts_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
std
([sample])Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
strip
([chars])Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
strlen
()Computes the length of this expression, which must resolve to a string.
substr
([start, end, count])Extracts the specified substring from this expression, which must resolve to a string.
sum
()Returns the sum of the values in this expression, which must resolve to a numeric array.
switch
(mapping[, default])Applies a switch statement to this expression, which effectively computes the given pseudocode.
tan
()Computes the tangent of this expression, which must resolve to a numeric value, in radians.
tanh
()Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
to_bool
()Converts the expression to a boolean value.
to_date
()Converts the expression to a date value.
Converts the expression to a double precision value.
to_int
()Converts the expression to an integer value.
Converts the expression to a string value.
trunc
([place])Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
type
()Returns the type string of this expression.
union
(*args)Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
unique
()Returns an array containing the unique values in this expression, which must resolve to an array.
upper
()Converts this expression, which must resolve to a string, to uppercase.
week
()Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
year
()Returns the year of this date expression (in UTC).
zip
(*args[, use_longest, defaults])Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
Attributes:
Whether this expression’s prefix is frozen.
-
to_mongo
(prefix=None)¶ Returns a MongoDB representation of the field.
- Parameters
prefix (None) – an optional prefix to prepend to the field name
- Returns
a string
-
abs
()¶ Computes the absolute value of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((F("uniqueness") - 0.5).abs() < 0.25) print(view.bounds("uniqueness"))
- Returns
-
static
all
(exprs)¶ Checks whether all of the given expressions evaluate to True.
If no expressions are provided, returns True.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" and # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.all([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
static
any
(exprs)¶ Checks whether any of the given expressions evaluate to True.
If no expressions are provided, returns False.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" or # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.any([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
append
(value)¶ Appends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Appends the "c" tag to each sample view = dataset.set_field("tags", F("tags").append("c")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
apply
(expr)¶ Applies the given expression to this expression.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples with `uniqueness` in [0.25, 0.75] view = dataset.match( F("uniqueness").apply((F() > 0.25) & (F() < 0.75)) ) print(view.bounds("uniqueness"))
- Parameters
expr – a
ViewExpression
- Returns
-
arccos
()¶ Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccos()` view = dataset.match(F("uniqueness").arccos() <= np.arccos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arccosh
()¶ Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccosh()` view = dataset.match((1 + F("uniqueness")).arccosh() >= np.arccosh(1.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsin
()¶ Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsin()` view = dataset.match(F("uniqueness").arcsin() >= np.arcsin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsinh
()¶ Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsinh()` view = dataset.match(F("uniqueness").arcsinh() >= np.arcsinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctan
()¶ Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctan()` view = dataset.match(F("uniqueness").arctan() >= np.arctan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctanh
()¶ Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctanh()` view = dataset.match(F("uniqueness").arctanh() >= np.arctanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
cases
(mapping, default=None)¶ Applies a case statement to this expression, which effectively computes the following pseudocode:
for key, value in mapping.items(): if self == key: return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Map numeric `uniqueness` values to 1 and null values to 0 cases_view = view.set_field( "uniqueness", F("uniqueness").type().cases({"double": 1, "null": 0}), ) print(cases_view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping literals or
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
ceil
()¶ Computes the ceiling of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).ceil() == 2) print(view.bounds("uniqueness"))
- Returns
-
concat
(*args)¶ Concatenates the given string(s) to this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Appends "-tag" to all tags transform_tag = F().concat("-tag") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
*args – one or more strings or string
ViewExpression
instancesbefore (False) – whether to position
args
before this string in the output string
- Returns
-
contains
(values, all=False)¶ Checks whether this expression, which must resolve to an array, contains any of the given values.
Pass
all=True
to require that this expression contains all of the given values.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") print(dataset.count()) # Only contains samples with a "cat" prediction view = dataset.match( F("predictions.detections.label").contains("cat") ) print(view.count()) # Only contains samples with "cat" or "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"]) ) print(view.count()) # Only contains samples with "cat" and "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"], all=True) ) print(view.count())
- Parameters
values – a value, iterable of values, or
ViewExpression
that resolves to an array of valuesall (False) – whether this expression must contain all (True) or any (False) of the given values
- Returns
-
contains_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, contains the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` contains "be" view = dataset.filter_labels( "predictions", F("label").contains_str("be") ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
cos
()¶ Computes the cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cos()` view = dataset.match(F("uniqueness").cos() <= np.cos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
cosh
()¶ Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cosh()` view = dataset.match(F("uniqueness").cosh() >= np.cosh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
day_of_month
()¶ Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the month for the dataset print(dataset.values(F("created_at").day_of_month())) # Samples with even days of the month view = dataset.match(F("created_at").day_of_month() % 2 == 0) print(len(view))
- Returns
-
day_of_week
()¶ Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 5), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 6), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 7), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the week for the dataset print(dataset.values(F("created_at").day_of_week())) # Samples with even days of the week view = dataset.match(F("created_at").day_of_week() % 2 == 0) print(len(view))
- Returns
-
day_of_year
()¶ Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the year for the dataset print(dataset.values(F("created_at").day_of_year())) # Samples with even days of the year view = dataset.match(F("created_at").day_of_year() % 2 == 0) print(len(view))
- Returns
-
difference
(values)¶ Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").difference(F("other_tags")))) # [['b']]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
ends_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are JPEGs or PNGs view = dataset.match(F("filepath").ends_with((".jpg", ".png"))) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
static
enumerate
(array, start=0)¶ Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `enumerated_tags` field with the enumerated `tag` dataset.add_sample_field("enumerated_tags", fo.ListField) view = dataset.set_field("enumerated_tags", F.enumerate(F("tags"))) print(view.first())
- Parameters
array – a
ViewExpression
that resolves to an arraystart (0) – the starting enumeration index to use
- Returns
-
exists
(bool=True)¶ Determines whether this expression, which must resolve to a field, exists and is not None.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "quickstart", dataset_name=fo.get_default_dataset_name() ) # Add a new field to one sample sample = dataset.first() sample["new_field"] = ["hello", "there"] sample.save() # Get samples that have a value for `new_field` view = dataset.match(F("new_field").exists()) print(len(view))
- Parameters
bool (True) – whether to determine whether this expression exists (True) or is None or non-existent (False)
- Returns
-
exp
()¶ Raises Euler’s number to this expression, which must resolve to a numeric value.
- Returns
-
extend
(*args)¶ Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Adds the "c" and "d" tags to each sample view = dataset.set_field("tags", F("tags").extend(["c", "d"])) print(view.first().tags)
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
filter
(expr)¶ Applies the given filter to the elements of this expression, which must resolve to an array.
The output array will only contain elements of the input array for which
expr
returnsTrue
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").filter(F("confidence") > 0.9) ) print(view.bounds("predictions.detections.confidence"))
- Parameters
expr – a
ViewExpression
that returns a boolean- Returns
-
floor
()¶ Computes the floor of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).floor() == 1) print(view.bounds("uniqueness"))
- Returns
-
hour
()¶ Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the hour portion of the dates in the dataset print(dataset.values(F("created_at").hour())) # Samples with even hours view = dataset.match(F("created_at").hour() % 2 == 0) print(len(view))
- Returns
-
if_else
(true_expr, false_expr)¶ Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) print(view.bounds("uniqueness"))
- Parameters
true_expr – a
ViewExpression
or MongoDB expression dictfalse_expr – a
ViewExpression
or MongoDB expression dict
- Returns
-
insert
(index, value)¶ Inserts the value before the given index in this expression, which must resolve to an array.
If
index <= 0
, the value is prepended to this array. Ifindex >= self.length()
, the value is appended to this array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "c"]), fo.Sample(filepath="image2.jpg", tags=["a", "c"]), ] ) # Adds the "ready" tag to each sample view = dataset.set_field("tags", F("tags").insert(1, "b")) print(view.first().tags)
- Parameters
index – the index at which to insert the value
value – the value or
ViewExpression
- Returns
-
intersection
(*args)¶ Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").intersection(F("other_tags")))) # [['a']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
is_array
()¶ Determines whether this expression is an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that tags are arrays view = dataset.match(F("tags").is_array()) print(len(view))
- Returns
-
property
is_frozen
¶ Whether this expression’s prefix is frozen.
-
is_in
(values)¶ Creates an expression that returns a boolean indicating whether
self in values
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains animal predictions view = dataset.filter_labels( "predictions", F("label").is_in(ANIMALS) ) print(view.count_values("predictions.detections.label"))
- Parameters
values – a value or iterable of values
- Returns
-
is_missing
()¶ Determines whether this expression refers to a missing field.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that `foobar` is a non-existent field on all samples view = dataset.match(F("foobar").is_missing()) print(len(view) == len(dataset))
- Returns
-
is_null
()¶ Determines whether this expression is null.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness = None not_unique_view = view.match(F("uniqueness").is_null()) print(len(not_unique_view))
- Returns
-
is_number
()¶ Determines whether this expression is a number.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness values has_unique_view = view.match(F("uniqueness").is_number()) print(len(has_unique_view))
- Returns
-
is_string
()¶ Determines whether this expression is a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that filepaths are strings view = dataset.match(F("filepath").is_string()) print(len(view))
- Returns
-
is_subset
(values)¶ Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
The arrays are treated as sets, so duplicate values are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "c"], ) ] ) print(dataset.values(F("tags").is_subset(F("other_tags")))) # [True]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
join
(delimiter)¶ Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Generate a `list,of,labels` for the `predictions` of each sample view = dataset.set_field( "predictions.labels", F("detections").map(F("label")).join(",") ) print(view.first().predictions.labels)
- Parameters
delimiter – the delimiter string
- Returns
-
length
()¶ Computes the length of this expression, which must resolve to an array.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with at least 15 predicted objects view = dataset.match(F("predictions.detections").length() >= 15) print(dataset.count()) print(view.count())
- Returns
-
let_in
(expr)¶ Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
This method is useful when
expr
contains multiple instances of this expression, since it avoids duplicate computation of this expression in the final pipeline.If
expr
is a simple expression such as aViewField
, no variable is defined andexpr
is directly returned.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] good_bboxes = (bbox_area > 0.25) & (bbox_area < 0.75) # Optimize the expression good_bboxes_opt = bbox_area.let_in(good_bboxes) # Contains predictions whose bounding box areas are in [0.25, 0.75] view = dataset.filter_labels("predictions", good_bboxes_opt) print(good_bboxes) print(good_bboxes_opt) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
expr – a
ViewExpression
- Returns
-
static
literal
(value)¶ Returns an expression representing the given value without parsing.
See this page for more information on when this method is required.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add the "$money" tag to each sample # The "$" character ordinarily has special meaning, so we must wrap # it in `literal()` in order to add it via this method view = dataset.set_field( "tags", F("tags").append(F.literal("$money")) ) print(view.first().tags)
- Parameters
value – a value
- Returns
-
ln
()¶ Computes the natural logarithm of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").ln() >= math.log(0.5)) print(view.bounds("uniqueness"))
- Returns
-
log
(base)¶ Computes the logarithm base
base
of this expression, which must resolve to a numeric value.Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log(2) >= math.log2(0.5)) print(view.bounds("uniqueness"))
- Parameters
base – the logarithm base
- Returns
-
log10
()¶ Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log10() >= math.log10(0.5)) print(view.bounds("uniqueness"))
- Returns
-
lower
()¶ Converts this expression, which must resolve to a string, to lowercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to lowercase transform_tag = F().lower() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
lstrip
(chars=None)¶ Removes whitespace characters from the beginning of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the beginning of each tag transform_tag = E(" ").concat(F()).lstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
map
(expr)¶ Applies the given expression to the elements of this expression, which must resolve to an array.
The output will be an array with the applied results.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").map(F().set_field("area", bbox_area)) ) print(view.bounds("predictions.detections.area"))
- Parameters
expr – a
ViewExpression
- Returns
-
map_values
(mapping)¶ Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # # Replace the `label` of all animal objects in the `predictions` # field with "animal" # mapping = {a: "animal" for a in ANIMALS} view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field("label", F("label").map_values(mapping)) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
mapping – a dict mapping keys to replacement values
- Returns
-
matches_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` is "cat" or "dog", case # insensitive view = dataset.map_labels( "predictions", {"cat": "CAT", "dog": "DOG"} ).filter_labels( "predictions", F("label").matches_str(("cat", "dog"), case_sensitive=False) ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
max
(value=None)¶ Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `max_area` property to the `predictions` field that # records the maximum prediction area in that sample view = dataset.set_field( "predictions.max_area", F("detections").map(bbox_area).max() ) print(view.bounds("predictions.max_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
mean
()¶ Returns the average value in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the average # confidence of the predictions view = dataset.set_field( "predictions.conf_mean", F("detections").map(F("confidence")).mean() ) print(view.bounds("predictions.conf_mean"))
- Returns
-
millisecond
()¶ Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 1000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 2000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 3000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 4000), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the millisecond portion of the dates in the dataset print(dataset.values(F("created_at").millisecond())) # Samples with even milliseconds view = dataset.match(F("created_at").millisecond() % 2 == 0) print(len(view))
- Returns
-
min
(value=None)¶ Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `min_area` property to the `predictions` field that # records the minimum prediction area in that sample view = dataset.set_field( "predictions.min_area", F("detections").map(bbox_area).min() ) print(view.bounds("predictions.min_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
minute
()¶ Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the minute portion of the dates in the dataset print(dataset.values(F("created_at").minute())) # Samples with even minutes view = dataset.match(F("created_at").minute() % 2 == 0) print(len(view))
- Returns
-
month
()¶ Returns the month of this date expression (in UTC) as a number between 1 and 12.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the months of the year for the dataset print(dataset.values(F("created_at").month())) # Samples from even months of the year view = dataset.match(F("created_at").month() % 2 == 0) print(len(view))
- Returns
-
pow
(power)¶ Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5).pow(2) + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5).pow(2) ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Parameters
power – the power
- Returns
-
prepend
(value)¶ Prepends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["b", "c"]), fo.Sample(filepath="image2.jpg", tags=["b", "c"]), ] ) # Adds the "a" tag to each sample view = dataset.set_field("tags", F("tags").prepend("a")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
static
rand
()¶ Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `rand` field with random numbers # dataset.add_sample_field("rand", fo.FloatField) dataset.set_field("rand", E.rand()).save("rand") print(dataset.bounds("rand")) # # Create a view that contains a different 10%% of the dataset each # time it is used # view = dataset.match(E.rand() < 0.1) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
randn
()¶ Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `randn` field with random numbers # dataset.add_sample_field("randn", fo.FloatField) dataset.set_field("randn", E.randn()).save("randn") print(dataset.bounds("randn")) # # Create a view that contains a different 50%% of the dataset each # time it is used # view = dataset.match(E.randn() < 0) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
range
(start, stop=None)¶ Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
If
stop
is provided, returns[start, start + 1, ..., stop - 1]
.If no
stop
is provided, returns[0, 1, ..., start - 1]
.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `ints` field based on the number of `tags` dataset.add_sample_field("ints", fo.ListField) view = dataset.set_field("ints", F.range(F("tags").length())) print(view.first())
- Parameters
start – the starting value, or stopping value if no
stop
is providedstop (None) – the stopping value, if both input arguments are provided
- Returns
-
re_match
(regex, options=None)¶ Performs a regular expression pattern match on this expression, which must resolve to a string.
The output of the expression will be
True
if the pattern matches andFalse
otherwise.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Get samples whose images are JPEGs # view = dataset.match(F("filepath").re_match("\.jpg$")) print(view.count()) print(view.first().filepath) # # Get samples whose images are in the "/Users" directory # view = dataset.match(F("filepath").re_match("^/Users/")) print(view.count()) print(view.first().filepath)
- Parameters
- Returns
-
reduce
(expr, init_val=0)¶ Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
The provided
expr
must include theVALUE
expression to properly define the reduction.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F from fiftyone.core.expressions import VALUE # # Compute the number of keypoints in each sample of a dataset # dataset = fo.Dataset() dataset.add_sample( fo.Sample( filepath="image.jpg", keypoints=fo.Keypoints( keypoints=[ fo.Keypoint(points=[(0, 0), (1, 1)]), fo.Keypoint(points=[(0, 0), (1, 0), (1, 1), (0, 1)]), ] ) ) ) view = dataset.set_field( "keypoints.count", F("$keypoints.keypoints").reduce(VALUE + F("points").length()), ) print(view.first().keypoints.count) # # Generate a `list,of,labels` for the `predictions` of each sample # dataset = foz.load_zoo_dataset("quickstart") join_labels = F("detections").reduce( VALUE.concat(",", F("label")), init_val="" ).lstrip(",") view = dataset.set_field("predictions.labels", join_labels) print(view.first().predictions.labels)
- Parameters
expr – a
ViewExpression
defining the reduction expression to apply. Must contain theVALUE
expressioninit_val (0) – an initial value for the reduction
- Returns
-
replace
(old, new)¶ Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Replaces "val" with "VAL" in each tag transform_tag = F().replace("val", "VAL") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
old – a string or
ViewExpression
resolving to a string expression specifying the substring to replacenew – a string or
ViewExpression
resolving to a string expression specifying the replacement value
- Returns
-
reverse
()¶ Reverses the order of the elements in the expression, which must resolve to an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") first_obj = F("predictions.detections")[0] last_obj = F("predictions.detections").reverse()[0] # Only contains samples whose first and last prediction have the # same label view = dataset.match( first_obj.apply(F("label")) == last_obj.apply(F("label")) ) print(dataset.count()) print(view.count())
- Returns
-
round
(place=0)¶ Rounds this expression, which must resolve to a numeric value, at the given decimal place.
Positive values of
place
will round toplace
decimal places:place=2: 1234.5678 --> 1234.57
Negative values of
place
will roundplace
digits left of the decimal:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((2 * F("uniqueness")).round() == 1) print(view.bounds("uniqueness"))
- Parameters
place (0) – the decimal place at which to round. Must be an integer in range
(-20, 100)
- Returns
-
rsplit
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
If the number of chunks exceeds
maxsplit
, splits are only performed on the lastmaxsplit
occurrences of the delimiter.The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-ok-go" to the first tag and then split once on "-" from the # right to create two tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-ok-go").rsplit("-", 1) ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the right
- Returns
-
rstrip
(chars=None)¶ Removes whitespace characters from the end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the end of each tag transform_tag = F().concat(" ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
second
()¶ Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the second portion of the dates in the dataset print(dataset.values(F("created_at").second())) # Samples with even seconds view = dataset.match(F("created_at").second() % 2 == 0) print(len(view))
- Returns
-
set_equals
(*args)¶ Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "b"], ) ] ) print(dataset.values(F("tags").set_equals(F("other_tags")))) # [True]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
set_field
(field, value_or_expr, relative=True)¶ Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
By default, the provided expression is computed by applying it to this expression via
self.apply(value_or_expr)
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Replaces the `label` attributes of the objects in the # `predictions` field according to the following rule: # # If the `label` starts with `b`, replace it with `b`. Otherwise, # replace it with "other" # view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field( "label", F("label").re_match("^b").if_else("b", "other"), ) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
field – the “field” or “embedded.field.name” to set
value_or_expr – a literal value or
ViewExpression
defining the field to setrelative (True) – whether to compute
value_or_expr
by applying it to this expression (True), or to use it untouched (False)
- Returns
-
sin
()¶ Computes the sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sin()` view = dataset.match(F("uniqueness").sin() >= np.sin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sinh
()¶ Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sinh()` view = dataset.match(F("uniqueness").sinh() >= np.sinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sort
(key=None, numeric=False, reverse=False)¶ Sorts this expression, which must resolve to an array.
If no
key
is provided, this array must contain elements whose BSON representation can be sorted by JavaScript’s.sort()
method.If a
key
is provided, the array must contain documents, which are sorted bykey
, which must be a field or embedded field.Examples:
# # Sort the tags of each sample in a dataset # import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="im1.jpg", tags=["z", "f", "p", "a"]), fo.Sample(filepath="im2.jpg", tags=["y", "q", "h", "d"]), fo.Sample(filepath="im3.jpg", tags=["w", "c", "v", "l"]), ] ) # Sort the `tags` of each sample view = dataset.set_field("tags", F("tags").sort()) print(view.first().tags) # # Sort the predictions in each sample of a dataset by `confidence` # import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") view = dataset.set_field( "predictions.detections", F("detections").sort(key="confidence", numeric=True, reverse=True) ) sample = view.first() print(sample.predictions.detections[0].confidence) print(sample.predictions.detections[-1].confidence)
- Parameters
key (None) – an optional field or
embedded.field.name
to sort bynumeric (False) – whether the array contains numeric values. By default, the values will be sorted alphabetically by their string representations
reverse (False) – whether to sort in descending order
- Returns
-
split
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-good" to the first tag and then split on "-" to create two # tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-good").split("-") ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the left
- Returns
-
sqrt
()¶ Computes the square root of this expression, which must resolve to a numeric value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5) ** 2 + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5) ** 2 ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Returns
-
starts_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are in "/Users" or "/home" directories view = dataset.match(F("filepath").starts_with(("/Users", "/home")) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
std
(sample=False)¶ Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.By default, the population standard deviation is returned. If you wish to compute the sample standard deviation instead, set
sample=True
.See https://en.wikipedia.org/wiki/Standard_deviation#Estimation for more information on population (biased) vs sample (unbiased) standard deviation.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the # standard deviation of the confidences view = dataset.set_field( "predictions.conf_std", F("detections").map(F("confidence")).std() ) print(view.bounds("predictions.conf_std"))
- Parameters
sample (False) – whether to compute the sample standard deviation rather than the population standard deviation
- Returns
-
strip
(chars=None)¶ Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from each tag transform_tag = E(" ").concat(F(), " ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
strlen
()¶ Computes the length of this expression, which must resolve to a string.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Records the length of each predicted object's `label` label_len = F().set_field("label_len", F("label").strlen()) view = dataset.set_field( "predictions.detections", F("detections").map(label_len), ) print(view.bounds("predictions.detections.label_len"))
- Returns
-
substr
(start=None, end=None, count=None)¶ Extracts the specified substring from this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Truncate the `label` of each prediction to 3 characters truncate_label = F().set_field("label", F("label").substr(count=3)) view = dataset.set_field( "predictions.detections", F("detections").map(truncate_label), ) print(view.distinct("predictions.detections.label"))
- Parameters
start (None) – the starting index of the substring. If negative, specifies an offset from the end of the string
end (None) – the ending index of the substring. If negative, specifies an offset from the end of the string
count (None) – the substring length to extract. If
None
, the rest of the string is returned
- Returns
-
sum
()¶ Returns the sum of the values in this expression, which must resolve to a numeric array.
Missing, non-numeric, or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the total # confidence of the predictions view = dataset.set_field( "predictions.total_conf", F("detections").map(F("confidence")).sum() ) print(view.bounds("predictions.total_conf"))
- Returns
-
switch
(mapping, default=None)¶ Applies a switch statement to this expression, which effectively computes the given pseudocode:
for key, value in mapping.items(): if self.apply(key): return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Round `uniqueness` values to either 0.25 or 0.75 view = dataset.set_field( "uniqueness", F("uniqueness").switch( { (0.0 < F()) & (F() <= 0.5): 0.25, (0.5 < F()) & (F() <= 1.0): 0.75, }, ) ) print(view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping boolean
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
tan
()¶ Computes the tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tan()` view = dataset.match(F("uniqueness").tan() >= np.tan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
tanh
()¶ Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tanh()` view = dataset.match(F("uniqueness").tanh() >= np.tanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
to_bool
()¶ Converts the expression to a boolean value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_bool` field that is False when # `uniqueness < 0.5` and True when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_bool", fo.BooleanField) view = dataset.set_field( "uniqueness_bool", (2.0 * F("uniqueness")).floor().to_bool() ) print(view.count_values("uniqueness_bool"))
- Returns
-
to_date
()¶ Converts the expression to a date value.
See this page for conversion rules.
Examples:
from datetime import datetime import pytz import fiftyone as fo from fiftyone import ViewField as F now = datetime.utcnow().replace(tzinfo=pytz.utc) sample = fo.Sample( filepath="image.png", date_ms=1000 * now.timestamp(), date_str=now.isoformat(), ) dataset = fo.Dataset() dataset.add_sample(sample) # Convert string/millisecond representations into datetimes dataset.add_sample_field("date1", fo.DateTimeField) dataset.add_sample_field("date2", fo.DateTimeField) ( dataset .set_field("date1", F("date_ms").to_date()) .set_field("date2", F("date_str").to_date()) .save() ) print(dataset.first())
- Returns
-
to_double
()¶ Converts the expression to a double precision value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_float` field that is 0.0 when # `uniqueness < 0.5` and 1.0 when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_float", fo.FloatField) view = dataset.set_field( "uniqueness_float", (F("uniqueness") >= 0.5).to_double() ) print(view.count_values("uniqueness_float"))
See this page for conversion rules.
- Returns
-
to_int
()¶ Converts the expression to an integer value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_int` field that contains the value of the # first decimal point of the `uniqueness` field dataset.add_sample_field("uniqueness_int", fo.IntField) view = dataset.set_field( "uniqueness_int", (10.0 * F("uniqueness")).floor().to_int() ) print(view.count_values("uniqueness_int"))
- Returns
-
to_string
()¶ Converts the expression to a string value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_str` field that is "true" when # `uniqueness >= 0.5` and "false" when `uniqueness < 0.5` dataset.add_sample_field("uniqueness_str", fo.StringField) view = dataset.set_field( "uniqueness_str", (F("uniqueness") >= 0.5).to_string() ) print(view.count_values("uniqueness_str"))
- Returns
-
trunc
(place=0)¶ Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
Positive values of
place
will truncate toplace
decimal places:place=2: 1234.5678 --> 1234.56
Negative values of
place
will replaceplace
digits left of the decimal with zero:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Only contains samples whose height is in [500, 600) pixels view = dataset.match(F("metadata.height").trunc(-2) == 500) print(view.bounds("metadata.height"))
- Parameters
place (0) – the decimal place at which to truncate
- Returns
-
type
()¶ Returns the type string of this expression.
See this page for more details.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Create a view that only contains samples with non-None uniqueness unique_only_view = view.match(F("uniqueness").type() != "null") print(len(unique_only_view))
- Returns
-
union
(*args)¶ Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").union(F("other_tags")))) # [['a', 'b', 'c']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
unique
()¶ Returns an array containing the unique values in this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], ) ] ) print(dataset.values(F("tags").unique())) # [['a', 'b']]
- Returns
-
upper
()¶ Converts this expression, which must resolve to a string, to uppercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to uppercase transform_tag = F().upper() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
week
()¶ Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the weeks of the year for the dataset print(dataset.values(F("created_at").week())) # Samples with even months of the week view = dataset.match(F("created_at").week() % 2 == 0) print(len(view))
- Returns
-
year
()¶ Returns the year of this date expression (in UTC).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1971, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1972, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1973, 1, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the years for the dataset print(dataset.values(F("created_at").year())) # Samples from even years view = dataset.match(F("created_at").year() % 2 == 0) print(len(view))
- Returns
-
static
zip
(*args, use_longest=False, defaults=None)¶ Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "c"], ints=[1, 2, 3, 4, 5], ), fo.Sample( filepath="image2.jpg", tags=["y", "z"], ints=[25, 26, 27, 28], ), ] ) dataset.add_sample_field("tags_ints", fo.ListField) # Populates an `tags_ints` field with the zipped `tags` and `ints` view = dataset.set_field("tags_ints", F.zip(F("tags"), F("ints"))) print(view.first()) # Same as above but use the longest array to determine output size view = dataset.set_field( "tags_ints", F.zip(F("tags"), F("ints"), use_longest=True, defaults=("", 0)) ) print(view.first())
- Parameters
*args – one or more arrays or
ViewExpression
instances resolving to arraysuse_longest (False) – whether to use the longest array to determine the number of elements in the output array. By default, the length of the shortest array is used
defaults (None) – an optional array of default values of same length as
*args
to use whenuse_longest == True
and the input arrays are of different lengths. If no defaults are provided anduse_longest == True
, then missing values are set toNone
- Returns
-
-
class
fiftyone.core.expressions.
ObjectId
(oid)¶ Bases:
fiftyone.core.expressions.ViewExpression
A
ViewExpression
that refers to an ObjectId of a document.The typical use case for this class is writing an expression that involves checking if the ID of a document matches a particular known ID.
Example:
from fiftyone import ViewField as F from fiftyone.core.expressions import ObjectId # Check if the ID of the document matches the given ID expr = F("_id") == ObjectId("5f452489ef00e6374aad384a")
- Parameters
oid – the object ID string
Methods:
to_mongo
([prefix])Returns a MongoDB representation of the ObjectId.
abs
()Computes the absolute value of this expression, which must resolve to a numeric value.
all
(exprs)Checks whether all of the given expressions evaluate to True.
any
(exprs)Checks whether any of the given expressions evaluate to True.
append
(value)Appends the given value to this expression, which must resolve to an array.
apply
(expr)Applies the given expression to this expression.
arccos
()Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
arccosh
()Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
arcsin
()Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
arcsinh
()Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
arctan
()Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
arctanh
()Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
cases
(mapping[, default])Applies a case statement to this expression, which effectively computes the following pseudocode.
ceil
()Computes the ceiling of this expression, which must resolve to a numeric value.
concat
(*args)Concatenates the given string(s) to this expression, which must resolve to a string.
contains
(values[, all])Checks whether this expression, which must resolve to an array, contains any of the given values.
contains_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, contains the given string or string(s).
cos
()Computes the cosine of this expression, which must resolve to a numeric value, in radians.
cosh
()Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
difference
(values)Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
ends_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
enumerate
(array[, start])Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.exists
([bool])Determines whether this expression, which must resolve to a field, exists and is not None.
exp
()Raises Euler’s number to this expression, which must resolve to a numeric value.
extend
(*args)Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
filter
(expr)Applies the given filter to the elements of this expression, which must resolve to an array.
floor
()Computes the floor of this expression, which must resolve to a numeric value.
hour
()Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
if_else
(true_expr, false_expr)Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.insert
(index, value)Inserts the value before the given index in this expression, which must resolve to an array.
intersection
(*args)Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
is_array
()Determines whether this expression is an array.
is_in
(values)Creates an expression that returns a boolean indicating whether
self in values
.Determines whether this expression refers to a missing field.
is_null
()Determines whether this expression is null.
Determines whether this expression is a number.
Determines whether this expression is a string.
is_subset
(values)Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
join
(delimiter)Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
length
()Computes the length of this expression, which must resolve to an array.
let_in
(expr)Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
literal
(value)Returns an expression representing the given value without parsing.
ln
()Computes the natural logarithm of this expression, which must resolve to a numeric value.
log
(base)Computes the logarithm base
base
of this expression, which must resolve to a numeric value.log10
()Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
lower
()Converts this expression, which must resolve to a string, to lowercase.
lstrip
([chars])Removes whitespace characters from the beginning of this expression, which must resolve to a string.
map
(expr)Applies the given expression to the elements of this expression, which must resolve to an array.
map_values
(mapping)Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
matches_str
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
max
([value])Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
mean
()Returns the average value in this expression, which must resolve to a numeric array.
Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
min
([value])Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
minute
()Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
month
()Returns the month of this date expression (in UTC) as a number between 1 and 12.
pow
(power)Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.prepend
(value)Prepends the given value to this expression, which must resolve to an array.
rand
()Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.randn
()Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
range
(start[, stop])Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
re_match
(regex[, options])Performs a regular expression pattern match on this expression, which must resolve to a string.
reduce
(expr[, init_val])Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
replace
(old, new)Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.reverse
()Reverses the order of the elements in the expression, which must resolve to an array.
round
([place])Rounds this expression, which must resolve to a numeric value, at the given decimal place.
rsplit
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
rstrip
([chars])Removes whitespace characters from the end of this expression, which must resolve to a string.
second
()Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
set_equals
(*args)Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
set_field
(field, value_or_expr[, relative])Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
sin
()Computes the sine of this expression, which must resolve to a numeric value, in radians.
sinh
()Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
sort
([key, numeric, reverse])Sorts this expression, which must resolve to an array.
split
(delimiter[, maxsplit])Splits this expression, which must resolve to a string, by the given delimiter.
sqrt
()Computes the square root of this expression, which must resolve to a numeric value.
starts_with
(str_or_strs[, case_sensitive])Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
std
([sample])Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
strip
([chars])Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
strlen
()Computes the length of this expression, which must resolve to a string.
substr
([start, end, count])Extracts the specified substring from this expression, which must resolve to a string.
sum
()Returns the sum of the values in this expression, which must resolve to a numeric array.
switch
(mapping[, default])Applies a switch statement to this expression, which effectively computes the given pseudocode.
tan
()Computes the tangent of this expression, which must resolve to a numeric value, in radians.
tanh
()Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
to_bool
()Converts the expression to a boolean value.
to_date
()Converts the expression to a date value.
Converts the expression to a double precision value.
to_int
()Converts the expression to an integer value.
Converts the expression to a string value.
trunc
([place])Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
type
()Returns the type string of this expression.
union
(*args)Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
unique
()Returns an array containing the unique values in this expression, which must resolve to an array.
upper
()Converts this expression, which must resolve to a string, to uppercase.
week
()Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
year
()Returns the year of this date expression (in UTC).
zip
(*args[, use_longest, defaults])Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
Attributes:
Whether this expression’s prefix is frozen.
-
to_mongo
(prefix=None)¶ Returns a MongoDB representation of the ObjectId.
- Parameters
prefix (None) – unused
- Returns
a MongoDB expression
-
abs
()¶ Computes the absolute value of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((F("uniqueness") - 0.5).abs() < 0.25) print(view.bounds("uniqueness"))
- Returns
-
static
all
(exprs)¶ Checks whether all of the given expressions evaluate to True.
If no expressions are provided, returns True.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" and # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.all([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
static
any
(exprs)¶ Checks whether any of the given expressions evaluate to True.
If no expressions are provided, returns False.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains predictions that are "cat" or # highly confident is_cat = F("label") == "cat" is_confident = F("confidence") > 0.95 view = dataset.filter_labels( "predictions", F.any([is_cat, is_confident]) ) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
exprs – a
ViewExpression
or iterable ofViewExpression
instances- Returns
-
append
(value)¶ Appends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Appends the "c" tag to each sample view = dataset.set_field("tags", F("tags").append("c")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
apply
(expr)¶ Applies the given expression to this expression.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples with `uniqueness` in [0.25, 0.75] view = dataset.match( F("uniqueness").apply((F() > 0.25) & (F() < 0.75)) ) print(view.bounds("uniqueness"))
- Parameters
expr – a
ViewExpression
- Returns
-
arccos
()¶ Computes the inverse cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccos()` view = dataset.match(F("uniqueness").arccos() <= np.arccos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arccosh
()¶ Computes the inverse hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arccosh()` view = dataset.match((1 + F("uniqueness")).arccosh() >= np.arccosh(1.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsin
()¶ Computes the inverse sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsin()` view = dataset.match(F("uniqueness").arcsin() >= np.arcsin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arcsinh
()¶ Computes the inverse hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arcsinh()` view = dataset.match(F("uniqueness").arcsinh() >= np.arcsinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctan
()¶ Computes the inverse tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctan()` view = dataset.match(F("uniqueness").arctan() >= np.arctan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
arctanh
()¶ Computes the inverse hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `arctanh()` view = dataset.match(F("uniqueness").arctanh() >= np.arctanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
cases
(mapping, default=None)¶ Applies a case statement to this expression, which effectively computes the following pseudocode:
for key, value in mapping.items(): if self == key: return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Map numeric `uniqueness` values to 1 and null values to 0 cases_view = view.set_field( "uniqueness", F("uniqueness").type().cases({"double": 1, "null": 0}), ) print(cases_view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping literals or
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
ceil
()¶ Computes the ceiling of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).ceil() == 2) print(view.bounds("uniqueness"))
- Returns
-
concat
(*args)¶ Concatenates the given string(s) to this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Appends "-tag" to all tags transform_tag = F().concat("-tag") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
*args – one or more strings or string
ViewExpression
instancesbefore (False) – whether to position
args
before this string in the output string
- Returns
-
contains
(values, all=False)¶ Checks whether this expression, which must resolve to an array, contains any of the given values.
Pass
all=True
to require that this expression contains all of the given values.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") print(dataset.count()) # Only contains samples with a "cat" prediction view = dataset.match( F("predictions.detections.label").contains("cat") ) print(view.count()) # Only contains samples with "cat" or "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"]) ) print(view.count()) # Only contains samples with "cat" and "dog" predictions view = dataset.match( F("predictions.detections.label").contains(["cat", "dog"], all=True) ) print(view.count())
- Parameters
values – a value, iterable of values, or
ViewExpression
that resolves to an array of valuesall (False) – whether this expression must contain all (True) or any (False) of the given values
- Returns
-
contains_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, contains the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` contains "be" view = dataset.filter_labels( "predictions", F("label").contains_str("be") ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
cos
()¶ Computes the cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cos()` view = dataset.match(F("uniqueness").cos() <= np.cos(0.5)) print(view.bounds("uniqueness"))
- Returns
-
cosh
()¶ Computes the hyperbolic cosine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `cosh()` view = dataset.match(F("uniqueness").cosh() >= np.cosh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
day_of_month
()¶ Returns the day of the month of this date expression (in UTC) as a number between 1 and 31.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the month for the dataset print(dataset.values(F("created_at").day_of_month())) # Samples with even days of the month view = dataset.match(F("created_at").day_of_month() % 2 == 0) print(len(view))
- Returns
-
day_of_week
()¶ Returns the day of the week of this date expression (in UTC) as a number between 1 (Sunday) and 7 (Saturday).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 5), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 6), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 7), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the week for the dataset print(dataset.values(F("created_at").day_of_week())) # Samples with even days of the week view = dataset.match(F("created_at").day_of_week() % 2 == 0) print(len(view))
- Returns
-
day_of_year
()¶ Returns the day of the year of this date expression (in UTC) as a number between 1 and 366.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the days of the year for the dataset print(dataset.values(F("created_at").day_of_year())) # Samples with even days of the year view = dataset.match(F("created_at").day_of_year() % 2 == 0) print(len(view))
- Returns
-
difference
(values)¶ Computes the set difference of this expression, which must resolve to an array, and the given array or array expression.
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").difference(F("other_tags")))) # [['b']]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
ends_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, ends with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are JPEGs or PNGs view = dataset.match(F("filepath").ends_with((".jpg", ".png"))) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
static
enumerate
(array, start=0)¶ Returns an array of
[index, element]
pairs enumerating the elements of the given expression, which must resolve to an array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `enumerated_tags` field with the enumerated `tag` dataset.add_sample_field("enumerated_tags", fo.ListField) view = dataset.set_field("enumerated_tags", F.enumerate(F("tags"))) print(view.first())
- Parameters
array – a
ViewExpression
that resolves to an arraystart (0) – the starting enumeration index to use
- Returns
-
exists
(bool=True)¶ Determines whether this expression, which must resolve to a field, exists and is not None.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset( "quickstart", dataset_name=fo.get_default_dataset_name() ) # Add a new field to one sample sample = dataset.first() sample["new_field"] = ["hello", "there"] sample.save() # Get samples that have a value for `new_field` view = dataset.match(F("new_field").exists()) print(len(view))
- Parameters
bool (True) – whether to determine whether this expression exists (True) or is None or non-existent (False)
- Returns
-
exp
()¶ Raises Euler’s number to this expression, which must resolve to a numeric value.
- Returns
-
extend
(*args)¶ Concatenates the given array(s) or array expression(s) to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b"]), fo.Sample(filepath="image2.jpg", tags=["a", "b"]), ] ) # Adds the "c" and "d" tags to each sample view = dataset.set_field("tags", F("tags").extend(["c", "d"])) print(view.first().tags)
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
filter
(expr)¶ Applies the given filter to the elements of this expression, which must resolve to an array.
The output array will only contain elements of the input array for which
expr
returnsTrue
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").filter(F("confidence") > 0.9) ) print(view.bounds("predictions.detections.confidence"))
- Parameters
expr – a
ViewExpression
that returns a boolean- Returns
-
floor
()¶ Computes the floor of this expression, which must resolve to a numeric value.
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.5, 1] view = dataset.match((F("uniqueness") + 0.5).floor() == 1) print(view.bounds("uniqueness"))
- Returns
-
hour
()¶ Returns the hour portion of this date expression (in UTC) as a number between 0 and 23.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the hour portion of the dates in the dataset print(dataset.values(F("created_at").hour())) # Samples with even hours view = dataset.match(F("created_at").hour() % 2 == 0) print(len(view))
- Returns
-
if_else
(true_expr, false_expr)¶ Returns either
true_expr
orfalse_expr
depending on the value of this expression, which must resolve to a boolean.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) print(view.bounds("uniqueness"))
- Parameters
true_expr – a
ViewExpression
or MongoDB expression dictfalse_expr – a
ViewExpression
or MongoDB expression dict
- Returns
-
insert
(index, value)¶ Inserts the value before the given index in this expression, which must resolve to an array.
If
index <= 0
, the value is prepended to this array. Ifindex >= self.length()
, the value is appended to this array.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "c"]), fo.Sample(filepath="image2.jpg", tags=["a", "c"]), ] ) # Adds the "ready" tag to each sample view = dataset.set_field("tags", F("tags").insert(1, "b")) print(view.first().tags)
- Parameters
index – the index at which to insert the value
value – the value or
ViewExpression
- Returns
-
intersection
(*args)¶ Computes the set intersection of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").intersection(F("other_tags")))) # [['a']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
is_array
()¶ Determines whether this expression is an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that tags are arrays view = dataset.match(F("tags").is_array()) print(len(view))
- Returns
-
property
is_frozen
¶ Whether this expression’s prefix is frozen.
-
is_in
(values)¶ Creates an expression that returns a boolean indicating whether
self in values
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # Create a view that only contains animal predictions view = dataset.filter_labels( "predictions", F("label").is_in(ANIMALS) ) print(view.count_values("predictions.detections.label"))
- Parameters
values – a value or iterable of values
- Returns
-
is_missing
()¶ Determines whether this expression refers to a missing field.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that `foobar` is a non-existent field on all samples view = dataset.match(F("foobar").is_missing()) print(len(view) == len(dataset))
- Returns
-
is_null
()¶ Determines whether this expression is null.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness = None not_unique_view = view.match(F("uniqueness").is_null()) print(len(not_unique_view))
- Returns
-
is_number
()¶ Determines whether this expression is a number.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.25 to None view = dataset.set_field( "uniqueness", (F("uniqueness") >= 0.25).if_else(F("uniqueness"), None) ) # Create view that only contains samples with uniqueness values has_unique_view = view.match(F("uniqueness").is_number()) print(len(has_unique_view))
- Returns
-
is_string
()¶ Determines whether this expression is a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Verify that filepaths are strings view = dataset.match(F("filepath").is_string()) print(len(view))
- Returns
-
is_subset
(values)¶ Checks whether this expression’s contents, which must resolve to an array, are a subset of the given array or array expression’s contents.
The arrays are treated as sets, so duplicate values are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "c"], ) ] ) print(dataset.values(F("tags").is_subset(F("other_tags")))) # [True]
- Parameters
values – an iterable of values or a
ViewExpression
that resolves to an array- Returns
-
join
(delimiter)¶ Joins the elements of this expression, which must resolve to a string array, by the given delimiter.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Generate a `list,of,labels` for the `predictions` of each sample view = dataset.set_field( "predictions.labels", F("detections").map(F("label")).join(",") ) print(view.first().predictions.labels)
- Parameters
delimiter – the delimiter string
- Returns
-
length
()¶ Computes the length of this expression, which must resolve to an array.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with at least 15 predicted objects view = dataset.match(F("predictions.detections").length() >= 15) print(dataset.count()) print(view.count())
- Returns
-
let_in
(expr)¶ Returns an equivalent expression where this expression is defined as a variable that is used wherever necessary in the given expression.
This method is useful when
expr
contains multiple instances of this expression, since it avoids duplicate computation of this expression in the final pipeline.If
expr
is a simple expression such as aViewField
, no variable is defined andexpr
is directly returned.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] good_bboxes = (bbox_area > 0.25) & (bbox_area < 0.75) # Optimize the expression good_bboxes_opt = bbox_area.let_in(good_bboxes) # Contains predictions whose bounding box areas are in [0.25, 0.75] view = dataset.filter_labels("predictions", good_bboxes_opt) print(good_bboxes) print(good_bboxes_opt) print(dataset.count("predictions.detections")) print(view.count("predictions.detections"))
- Parameters
expr – a
ViewExpression
- Returns
-
static
literal
(value)¶ Returns an expression representing the given value without parsing.
See this page for more information on when this method is required.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add the "$money" tag to each sample # The "$" character ordinarily has special meaning, so we must wrap # it in `literal()` in order to add it via this method view = dataset.set_field( "tags", F("tags").append(F.literal("$money")) ) print(view.first().tags)
- Parameters
value – a value
- Returns
-
ln
()¶ Computes the natural logarithm of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").ln() >= math.log(0.5)) print(view.bounds("uniqueness"))
- Returns
-
log
(base)¶ Computes the logarithm base
base
of this expression, which must resolve to a numeric value.Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log(2) >= math.log2(0.5)) print(view.bounds("uniqueness"))
- Parameters
base – the logarithm base
- Returns
-
log10
()¶ Computes the logarithm base 10 of this expression, which must resolve to a numeric value.
Examples:
import math import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 view = dataset.match(F("uniqueness").log10() >= math.log10(0.5)) print(view.bounds("uniqueness"))
- Returns
-
lower
()¶ Converts this expression, which must resolve to a string, to lowercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to lowercase transform_tag = F().lower() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
lstrip
(chars=None)¶ Removes whitespace characters from the beginning of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the beginning of each tag transform_tag = E(" ").concat(F()).lstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
map
(expr)¶ Applies the given expression to the elements of this expression, which must resolve to an array.
The output will be an array with the applied results.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Only include predictions with `confidence` of at least 0.9 view = dataset.set_field( "predictions.detections", F("detections").map(F().set_field("area", bbox_area)) ) print(view.bounds("predictions.detections.area"))
- Parameters
expr – a
ViewExpression
- Returns
-
map_values
(mapping)¶ Replaces this expression with the corresponding value in the provided mapping dict, if it is present as a key.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F ANIMALS = [ "bear", "bird", "cat", "cow", "dog", "elephant", "giraffe", "horse", "sheep", "zebra" ] dataset = foz.load_zoo_dataset("quickstart") # # Replace the `label` of all animal objects in the `predictions` # field with "animal" # mapping = {a: "animal" for a in ANIMALS} view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field("label", F("label").map_values(mapping)) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
mapping – a dict mapping keys to replacement values
- Returns
-
matches_str
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, exactly matches the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains predictions whose `label` is "cat" or "dog", case # insensitive view = dataset.map_labels( "predictions", {"cat": "CAT", "dog": "DOG"} ).filter_labels( "predictions", F("label").matches_str(("cat", "dog"), case_sensitive=False) ) print(view.distinct("predictions.detections.label"))
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
max
(value=None)¶ Returns the maximum value of either this expression, which must resolve to an array, or the maximum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `max_area` property to the `predictions` field that # records the maximum prediction area in that sample view = dataset.set_field( "predictions.max_area", F("detections").map(bbox_area).max() ) print(view.bounds("predictions.max_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
mean
()¶ Returns the average value in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the average # confidence of the predictions view = dataset.set_field( "predictions.conf_mean", F("detections").map(F("confidence")).mean() ) print(view.bounds("predictions.conf_mean"))
- Returns
-
millisecond
()¶ Returns the millisecond portion of this date expression (in UTC) as an integer between 0 and 999.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 1000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 2000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 3000), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 0, 4000), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the millisecond portion of the dates in the dataset print(dataset.values(F("created_at").millisecond())) # Samples with even milliseconds view = dataset.match(F("created_at").millisecond() % 2 == 0) print(len(view))
- Returns
-
min
(value=None)¶ Returns the minimum value of either this expression, which must resolve to an array, or the minimum of this expression and the given value.
Missing or
None
values are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format bbox_area = F("bounding_box")[2] * F("bounding_box")[3] # Adds a `min_area` property to the `predictions` field that # records the minimum prediction area in that sample view = dataset.set_field( "predictions.min_area", F("detections").map(bbox_area).min() ) print(view.bounds("predictions.min_area"))
- Parameters
value (None) – an optional value to compare to
- Returns
-
minute
()¶ Returns the minute portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the minute portion of the dates in the dataset print(dataset.values(F("created_at").minute())) # Samples with even minutes view = dataset.match(F("created_at").minute() % 2 == 0) print(len(view))
- Returns
-
month
()¶ Returns the month of this date expression (in UTC) as a number between 1 and 12.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the months of the year for the dataset print(dataset.values(F("created_at").month())) # Samples from even months of the year view = dataset.match(F("created_at").month() % 2 == 0) print(len(view))
- Returns
-
pow
(power)¶ Raises this expression, which must resolve to a numeric value, to the given power,
self ** power
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5).pow(2) + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5).pow(2) ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Parameters
power – the power
- Returns
-
prepend
(value)¶ Prepends the given value to this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["b", "c"]), fo.Sample(filepath="image2.jpg", tags=["b", "c"]), ] ) # Adds the "a" tag to each sample view = dataset.set_field("tags", F("tags").prepend("a")) print(view.first().tags)
- Parameters
value – the value or
ViewExpression
- Returns
-
static
rand
()¶ Returns an expression that generates a uniform random float in
[0, 1]
each time it is called.Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `rand` field with random numbers # dataset.add_sample_field("rand", fo.FloatField) dataset.set_field("rand", E.rand()).save("rand") print(dataset.bounds("rand")) # # Create a view that contains a different 10%% of the dataset each # time it is used # view = dataset.match(E.rand() < 0.1) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
randn
()¶ Returns an expression that generates a sample from the standard Gaussian distribution each time it is called.
Warning
This expression will generate new values each time it is used, so you likely do not want to use it to construct dataset views, since such views would produce different outputs each time they are used.
A typical usage for this expression is in conjunction with
fiftyone.core.view.DatasetView.set_field()
andfiftyone.core.view.DatasetView.save()
to populate a randomized field on a dataset.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E dataset = foz.load_zoo_dataset("quickstart").clone() # # Populate a new `randn` field with random numbers # dataset.add_sample_field("randn", fo.FloatField) dataset.set_field("randn", E.randn()).save("randn") print(dataset.bounds("randn")) # # Create a view that contains a different 50%% of the dataset each # time it is used # view = dataset.match(E.randn() < 0) print(view.first().id) print(view.first().id) # probably different!
- Returns
-
static
range
(start, stop=None)¶ Returns an array expression containing the sequence of integers from the specified start (inclusive) to stop (exclusive).
If
stop
is provided, returns[start, start + 1, ..., stop - 1]
.If no
stop
is provided, returns[0, 1, ..., start - 1]
.Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="image1.jpg", tags=["a", "b", "c"]), fo.Sample(filepath="image2.jpg", tags=["y", "z"]), ] ) # Populates an `ints` field based on the number of `tags` dataset.add_sample_field("ints", fo.ListField) view = dataset.set_field("ints", F.range(F("tags").length())) print(view.first())
- Parameters
start – the starting value, or stopping value if no
stop
is providedstop (None) – the stopping value, if both input arguments are provided
- Returns
-
re_match
(regex, options=None)¶ Performs a regular expression pattern match on this expression, which must resolve to a string.
The output of the expression will be
True
if the pattern matches andFalse
otherwise.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Get samples whose images are JPEGs # view = dataset.match(F("filepath").re_match("\.jpg$")) print(view.count()) print(view.first().filepath) # # Get samples whose images are in the "/Users" directory # view = dataset.match(F("filepath").re_match("^/Users/")) print(view.count()) print(view.first().filepath)
- Parameters
- Returns
-
reduce
(expr, init_val=0)¶ Applies the given reduction to this expression, which must resolve to an array, and returns the single value computed.
The provided
expr
must include theVALUE
expression to properly define the reduction.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F from fiftyone.core.expressions import VALUE # # Compute the number of keypoints in each sample of a dataset # dataset = fo.Dataset() dataset.add_sample( fo.Sample( filepath="image.jpg", keypoints=fo.Keypoints( keypoints=[ fo.Keypoint(points=[(0, 0), (1, 1)]), fo.Keypoint(points=[(0, 0), (1, 0), (1, 1), (0, 1)]), ] ) ) ) view = dataset.set_field( "keypoints.count", F("$keypoints.keypoints").reduce(VALUE + F("points").length()), ) print(view.first().keypoints.count) # # Generate a `list,of,labels` for the `predictions` of each sample # dataset = foz.load_zoo_dataset("quickstart") join_labels = F("detections").reduce( VALUE.concat(",", F("label")), init_val="" ).lstrip(",") view = dataset.set_field("predictions.labels", join_labels) print(view.first().predictions.labels)
- Parameters
expr – a
ViewExpression
defining the reduction expression to apply. Must contain theVALUE
expressioninit_val (0) – an initial value for the reduction
- Returns
-
replace
(old, new)¶ Replaces all occurrences of
old
withnew
in this expression, which must resolve to a string.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Replaces "val" with "VAL" in each tag transform_tag = F().replace("val", "VAL") view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
old – a string or
ViewExpression
resolving to a string expression specifying the substring to replacenew – a string or
ViewExpression
resolving to a string expression specifying the replacement value
- Returns
-
reverse
()¶ Reverses the order of the elements in the expression, which must resolve to an array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") first_obj = F("predictions.detections")[0] last_obj = F("predictions.detections").reverse()[0] # Only contains samples whose first and last prediction have the # same label view = dataset.match( first_obj.apply(F("label")) == last_obj.apply(F("label")) ) print(dataset.count()) print(view.count())
- Returns
-
round
(place=0)¶ Rounds this expression, which must resolve to a numeric value, at the given decimal place.
Positive values of
place
will round toplace
decimal places:place=2: 1234.5678 --> 1234.57
Negative values of
place
will roundplace
digits left of the decimal:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Only contains samples with `uniqueness` in [0.25, 0.75] view = dataset.match((2 * F("uniqueness")).round() == 1) print(view.bounds("uniqueness"))
- Parameters
place (0) – the decimal place at which to round. Must be an integer in range
(-20, 100)
- Returns
-
rsplit
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
If the number of chunks exceeds
maxsplit
, splits are only performed on the lastmaxsplit
occurrences of the delimiter.The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-ok-go" to the first tag and then split once on "-" from the # right to create two tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-ok-go").rsplit("-", 1) ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the right
- Returns
-
rstrip
(chars=None)¶ Removes whitespace characters from the end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from the end of each tag transform_tag = F().concat(" ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
second
()¶ Returns the second portion of this date expression (in UTC) as a number between 0 and 59.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 2), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 3), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1, 0, 0, 4), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the second portion of the dates in the dataset print(dataset.values(F("created_at").second())) # Samples with even seconds view = dataset.match(F("created_at").second() % 2 == 0) print(len(view))
- Returns
-
set_equals
(*args)¶ Checks whether this expression, which must resolve to an array, contains the same distinct values as each of the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are ignored.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], other_tags=["a", "b", "b"], ) ] ) print(dataset.values(F("tags").set_equals(F("other_tags")))) # [True]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
set_field
(field, value_or_expr, relative=True)¶ Sets the specified field or embedded field of this expression, which must resolve to a document, to the given value or expression.
By default, the provided expression is computed by applying it to this expression via
self.apply(value_or_expr)
.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # # Replaces the `label` attributes of the objects in the # `predictions` field according to the following rule: # # If the `label` starts with `b`, replace it with `b`. Otherwise, # replace it with "other" # view = dataset.set_field( "predictions.detections", F("detections").map( F().set_field( "label", F("label").re_match("^b").if_else("b", "other"), ) ) ) print(view.count_values("predictions.detections.label"))
- Parameters
field – the “field” or “embedded.field.name” to set
value_or_expr – a literal value or
ViewExpression
defining the field to setrelative (True) – whether to compute
value_or_expr
by applying it to this expression (True), or to use it untouched (False)
- Returns
-
sin
()¶ Computes the sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sin()` view = dataset.match(F("uniqueness").sin() >= np.sin(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sinh
()¶ Computes the hyperbolic sine of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `sinh()` view = dataset.match(F("uniqueness").sinh() >= np.sinh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
sort
(key=None, numeric=False, reverse=False)¶ Sorts this expression, which must resolve to an array.
If no
key
is provided, this array must contain elements whose BSON representation can be sorted by JavaScript’s.sort()
method.If a
key
is provided, the array must contain documents, which are sorted bykey
, which must be a field or embedded field.Examples:
# # Sort the tags of each sample in a dataset # import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample(filepath="im1.jpg", tags=["z", "f", "p", "a"]), fo.Sample(filepath="im2.jpg", tags=["y", "q", "h", "d"]), fo.Sample(filepath="im3.jpg", tags=["w", "c", "v", "l"]), ] ) # Sort the `tags` of each sample view = dataset.set_field("tags", F("tags").sort()) print(view.first().tags) # # Sort the predictions in each sample of a dataset by `confidence` # import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") view = dataset.set_field( "predictions.detections", F("detections").sort(key="confidence", numeric=True, reverse=True) ) sample = view.first() print(sample.predictions.detections[0].confidence) print(sample.predictions.detections[-1].confidence)
- Parameters
key (None) – an optional field or
embedded.field.name
to sort bynumeric (False) – whether the array contains numeric values. By default, the values will be sorted alphabetically by their string representations
reverse (False) – whether to sort in descending order
- Returns
-
split
(delimiter, maxsplit=None)¶ Splits this expression, which must resolve to a string, by the given delimiter.
The result is a string array that contains the chunks with the delimiter removed. If the delimiter is not found, this full string is returned as a single element array.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add "-good" to the first tag and then split on "-" to create two # tags for each sample view = dataset.set_field( "tags", F("tags")[0].concat("-good").split("-") ) print(view.first().tags)
- Parameters
delimiter – the delimiter string or
ViewExpression
resolving to a string expressionmaxsplit (None) – a maximum number of splits to perform, from the left
- Returns
-
sqrt
()¶ Computes the square root of this expression, which must resolve to a numeric value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Bboxes are in [top-left-x, top-left-y, width, height] format center_dist = ( (F("bounding_box")[0] + 0.5 * F("bounding_box")[2] - 0.5) ** 2 + (F("bounding_box")[1] + 0.5 * F("bounding_box")[3] - 0.5) ** 2 ).sqrt() # Only contains predictions whose bounding box center is a distance # of at most 0.02 from the center of the image view = dataset.select_fields("predictions").filter_labels( "predictions", center_dist < 0.02 ) session = fo.launch_app(view=view)
- Returns
-
starts_with
(str_or_strs, case_sensitive=True)¶ Determines whether this expression, which must resolve to a string, starts with the given string or string(s).
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose images are in "/Users" or "/home" directories view = dataset.match(F("filepath").starts_with(("/Users", "/home")) print(view.count()) print(view.first().filepath)
- Parameters
str_or_strs – a string or iterable of strings
case_sensitive (True) – whether to perform a case sensitive match
- Returns
-
std
(sample=False)¶ Returns the standard deviation of the values in this expression, which must resolve to a numeric array.
Missing or
None
-valued elements are ignored.By default, the population standard deviation is returned. If you wish to compute the sample standard deviation instead, set
sample=True
.See https://en.wikipedia.org/wiki/Standard_deviation#Estimation for more information on population (biased) vs sample (unbiased) standard deviation.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the # standard deviation of the confidences view = dataset.set_field( "predictions.conf_std", F("detections").map(F("confidence")).std() ) print(view.bounds("predictions.conf_std"))
- Parameters
sample (False) – whether to compute the sample standard deviation rather than the population standard deviation
- Returns
-
strip
(chars=None)¶ Removes whitespace characters from the beginning and end of this expression, which must resolve to a string.
If
chars
is provided, those characters are removed instead of whitespace.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewExpression as E from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Adds and then strips whitespace from each tag transform_tag = E(" ").concat(F(), " ").rstrip() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Parameters
chars (None) – an optional string or
ViewExpression
resolving to a string expression specifying characters to remove- Returns
-
strlen
()¶ Computes the length of this expression, which must resolve to a string.
If this expression’s value is null or missing, zero is returned.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Records the length of each predicted object's `label` label_len = F().set_field("label_len", F("label").strlen()) view = dataset.set_field( "predictions.detections", F("detections").map(label_len), ) print(view.bounds("predictions.detections.label_len"))
- Returns
-
substr
(start=None, end=None, count=None)¶ Extracts the specified substring from this expression, which must resolve to a string.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Truncate the `label` of each prediction to 3 characters truncate_label = F().set_field("label", F("label").substr(count=3)) view = dataset.set_field( "predictions.detections", F("detections").map(truncate_label), ) print(view.distinct("predictions.detections.label"))
- Parameters
start (None) – the starting index of the substring. If negative, specifies an offset from the end of the string
end (None) – the ending index of the substring. If negative, specifies an offset from the end of the string
count (None) – the substring length to extract. If
None
, the rest of the string is returned
- Returns
-
sum
()¶ Returns the sum of the values in this expression, which must resolve to a numeric array.
Missing, non-numeric, or
None
-valued elements are ignored.Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Add a field to each `predictions` object that records the total # confidence of the predictions view = dataset.set_field( "predictions.total_conf", F("detections").map(F("confidence")).sum() ) print(view.bounds("predictions.total_conf"))
- Returns
-
switch
(mapping, default=None)¶ Applies a switch statement to this expression, which effectively computes the given pseudocode:
for key, value in mapping.items(): if self.apply(key): return value if default is not None: return default
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Round `uniqueness` values to either 0.25 or 0.75 view = dataset.set_field( "uniqueness", F("uniqueness").switch( { (0.0 < F()) & (F() <= 0.5): 0.25, (0.5 < F()) & (F() <= 1.0): 0.75, }, ) ) print(view.count_values("uniqueness"))
- Parameters
mapping – a dict mapping boolean
ViewExpression
keys to literal orViewExpression
valuesdefault (None) – an optional literal or
ViewExpression
to return if none of the switch branches are taken
- Returns
-
tan
()¶ Computes the tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tan()` view = dataset.match(F("uniqueness").tan() >= np.tan(0.5)) print(view.bounds("uniqueness"))
- Returns
-
tanh
()¶ Computes the hyperbolic tangent of this expression, which must resolve to a numeric value, in radians.
Examples:
import numpy as np import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Get samples whose `uniqueness` value is >= 0.5 using `tanh()` view = dataset.match(F("uniqueness").tanh() >= np.tanh(0.5)) print(view.bounds("uniqueness"))
- Returns
-
to_bool
()¶ Converts the expression to a boolean value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_bool` field that is False when # `uniqueness < 0.5` and True when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_bool", fo.BooleanField) view = dataset.set_field( "uniqueness_bool", (2.0 * F("uniqueness")).floor().to_bool() ) print(view.count_values("uniqueness_bool"))
- Returns
-
to_date
()¶ Converts the expression to a date value.
See this page for conversion rules.
Examples:
from datetime import datetime import pytz import fiftyone as fo from fiftyone import ViewField as F now = datetime.utcnow().replace(tzinfo=pytz.utc) sample = fo.Sample( filepath="image.png", date_ms=1000 * now.timestamp(), date_str=now.isoformat(), ) dataset = fo.Dataset() dataset.add_sample(sample) # Convert string/millisecond representations into datetimes dataset.add_sample_field("date1", fo.DateTimeField) dataset.add_sample_field("date2", fo.DateTimeField) ( dataset .set_field("date1", F("date_ms").to_date()) .set_field("date2", F("date_str").to_date()) .save() ) print(dataset.first())
- Returns
-
to_double
()¶ Converts the expression to a double precision value.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_float` field that is 0.0 when # `uniqueness < 0.5` and 1.0 when `uniqueness >= 0.5` dataset.add_sample_field("uniqueness_float", fo.FloatField) view = dataset.set_field( "uniqueness_float", (F("uniqueness") >= 0.5).to_double() ) print(view.count_values("uniqueness_float"))
See this page for conversion rules.
- Returns
-
to_int
()¶ Converts the expression to an integer value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_int` field that contains the value of the # first decimal point of the `uniqueness` field dataset.add_sample_field("uniqueness_int", fo.IntField) view = dataset.set_field( "uniqueness_int", (10.0 * F("uniqueness")).floor().to_int() ) print(view.count_values("uniqueness_int"))
- Returns
-
to_string
()¶ Converts the expression to a string value.
See this page for conversion rules.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart").clone() # Adds a `uniqueness_str` field that is "true" when # `uniqueness >= 0.5` and "false" when `uniqueness < 0.5` dataset.add_sample_field("uniqueness_str", fo.StringField) view = dataset.set_field( "uniqueness_str", (F("uniqueness") >= 0.5).to_string() ) print(view.count_values("uniqueness_str"))
- Returns
-
trunc
(place=0)¶ Truncates this expression, which must resolve to a numeric value, at the specified decimal place.
Positive values of
place
will truncate toplace
decimal places:place=2: 1234.5678 --> 1234.56
Negative values of
place
will replaceplace
digits left of the decimal with zero:place=-1: 1234.5678 --> 1230
Examples:
import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") dataset.compute_metadata() # Only contains samples whose height is in [500, 600) pixels view = dataset.match(F("metadata.height").trunc(-2) == 500) print(view.bounds("metadata.height"))
- Parameters
place (0) – the decimal place at which to truncate
- Returns
-
type
()¶ Returns the type string of this expression.
See this page for more details.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Set `uniqueness` values below 0.75 to None view = dataset.set_field( "uniqueness", (F("uniqueness") > 0.75).if_else(F("uniqueness"), None) ) # Create a view that only contains samples with non-None uniqueness unique_only_view = view.match(F("uniqueness").type() != "null") print(len(unique_only_view))
- Returns
-
union
(*args)¶ Computes the set union of this expression, which must resolve to an array, and the given array(s) or array expression(s).
The arrays are treated as sets, so all duplicates are removed.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b"], other_tags=["a", "c"] ) ] ) print(dataset.values(F("tags").union(F("other_tags")))) # [['a', 'b', 'c']]
- Parameters
*args – one or more arrays or
ViewExpression
instances that resolve to array expressions- Returns
-
unique
()¶ Returns an array containing the unique values in this expression, which must resolve to an array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "a", "b"], ) ] ) print(dataset.values(F("tags").unique())) # [['a', 'b']]
- Returns
-
upper
()¶ Converts this expression, which must resolve to a string, to uppercase.
Examples:
import fiftyone as fo import fiftyone.zoo as foz from fiftyone import ViewField as F dataset = foz.load_zoo_dataset("quickstart") # Converts all tags to uppercase transform_tag = F().upper() view = dataset.set_field("tags", F("tags").map(transform_tag)) print(dataset.distinct("tags")) print(view.distinct("tags"))
- Returns
-
week
()¶ Returns the week of the year of this date expression (in UTC) as a number between 0 and 53.
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 2, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 3, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 4, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the weeks of the year for the dataset print(dataset.values(F("created_at").week())) # Samples with even months of the week view = dataset.match(F("created_at").week() % 2 == 0) print(len(view))
- Returns
-
year
()¶ Returns the year of this date expression (in UTC).
Examples:
from datetime import datetime import fiftyone as fo from fiftyone import ViewField as F samples = [ fo.Sample( filepath="image1.jpg", created_at=datetime(1970, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1971, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1972, 1, 1), ), fo.Sample( filepath="image1.jpg", created_at=datetime(1973, 1, 1), ), ] dataset = fo.Dataset() dataset.add_samples(samples) # Get the years for the dataset print(dataset.values(F("created_at").year())) # Samples from even years view = dataset.match(F("created_at").year() % 2 == 0) print(len(view))
- Returns
-
static
zip
(*args, use_longest=False, defaults=None)¶ Zips the given expressions, which must resolve to arrays, into an array whose ith element is an array containing the ith element from each input array.
Examples:
import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="image1.jpg", tags=["a", "b", "c"], ints=[1, 2, 3, 4, 5], ), fo.Sample( filepath="image2.jpg", tags=["y", "z"], ints=[25, 26, 27, 28], ), ] ) dataset.add_sample_field("tags_ints", fo.ListField) # Populates an `tags_ints` field with the zipped `tags` and `ints` view = dataset.set_field("tags_ints", F.zip(F("tags"), F("ints"))) print(view.first()) # Same as above but use the longest array to determine output size view = dataset.set_field( "tags_ints", F.zip(F("tags"), F("ints"), use_longest=True, defaults=("", 0)) ) print(view.first())
- Parameters
*args – one or more arrays or
ViewExpression
instances resolving to arraysuse_longest (False) – whether to use the longest array to determine the number of elements in the output array. By default, the length of the shortest array is used
defaults (None) – an optional array of default values of same length as
*args
to use whenuse_longest == True
and the input arrays are of different lengths. If no defaults are provided anduse_longest == True
, then missing values are set toNone
- Returns
-
fiftyone.core.expressions.
VALUE
(field) = '$$value'¶ A
ViewExpression
that refers to the current$$value
in a MongoDB reduction expression.See
ViewExpression.reduce()
for more information.