Loading Datasets From Disk¶
FiftyOne provides native support for importing datasets from disk in a variety of common formats, and it can be easily extended to import datasets in custom formats.
Note
Did you know? You can import media and/or labels from within the FiftyOne App by installing the @voxel51/io plugin!
Note
If your data is in a custom format, writing a simple loop is the easiest way to load your data into FiftyOne.
Basic recipe¶
The interface for creating a FiftyOne Dataset
for your data on disk is
conveniently exposed via the Python library and the CLI. The basic recipe is
that you simply specify the path(s) to the data on disk and the type of dataset
that you’re loading.
You can import a Dataset
from disk via the
Dataset.from_dir()
factory
method.
If your data is stored in the
canonical format of the type you’re
importing, then you can load it by providing the dataset_dir
and
dataset_type
parameters:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo # The directory containing the dataset to import dataset_dir = "/path/to/dataset" # The type of the dataset being imported dataset_type = fo.types.COCODetectionDataset # for example # Import the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=dataset_type, ) |
Alternatively, when importing labeled datasets in formats such as
COCO, you may find it more natural to
provide the data_path
and labels_path
parameters to independently
specify the location of the source media on disk and the annotations file
containing the labels to import:
1 2 3 4 5 6 7 8 9 10 11 12 | # The directory containing the source images data_path = "/path/to/images" # The path to the COCO labels JSON file labels_path = "/path/to/coco-labels.json" # Import the dataset dataset = fo.Dataset.from_dir( dataset_type=fo.types.COCODetectionDataset, data_path=data_path, labels_path=labels_path, ) |
Many formats like COCO also support
storing absolute filepaths to the source media directly in the labels, in
which case you can provide only the labels_path
parameter:
1 2 3 4 5 6 7 8 | # The path to a COCO labels JSON file containing absolute image paths labels_path = "/path/to/coco-labels.json" # Import the dataset dataset = fo.Dataset.from_dir( dataset_type=fo.types.COCODetectionDataset, labels_path=labels_path, ) |
In general, you can pass any parameter for the DatasetImporter
of the
format you’re importing to
Dataset.from_dir()
. For
example, most builtin importers support optional max_samples
, shuffle
,
and seed
parameters, which provide support for importing a small subset
of a potentially large dataset:
1 2 3 4 5 6 7 | # Import a random subset of 10 samples from the dataset dataset = fo.Dataset.from_dir( ..., max_samples=10, shuffle=True, seed=51, ) |
You can import a dataset from disk into FiftyOne via the CLI.
If your data is stored in the
canonical format of the type you’re
importing, then you can load it by providing the --dataset-dir
and
--type
options:
# A name for the dataset
NAME=my-dataset
# The directory containing the dataset to import
DATASET_DIR=/path/to/dataset
# The type of the dataset being imported
# Any subclass of `fiftyone.types.Dataset` is supported
TYPE=fiftyone.types.COCODetectionDataset # for example
# Import the dataset
fiftyone datasets create --name $NAME --dataset-dir $DATASET_DIR --type $TYPE
Alternatively, when importing labeled datasets in formats such as
COCO, you may find it more natural to
provide the data_path
and labels_path
parameters via the
kwargs option to independently
specify the location of the source media on disk and the annotations file
containing the labels to import:
# The directory containing the source images
DATA_PATH=/path/to/images
# The path to the COCO labels JSON file
LABELS_PATH=/path/to/coco-labels.json
# Import the dataset
fiftyone datasets create --name my-dataset \
--type fiftyone.types.COCODetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Many formats like COCO also support
storing absolute filepaths to the source media directly in the labels, in
which case you can provide only the labels_path
parameter:
# The path to a COCO labels JSON file containing absolute image paths
LABELS_PATH=/path/to/coco-labels.json
# Import the dataset
fiftyone datasets create --name my-dataset \
--type fiftyone.types.COCODetectionDataset \
--kwargs labels_path=$LABELS_PATH
In general, you can pass any parameter for the DatasetImporter
of the
format you’re importing via the
kwargs option. For example, most
builtin importers support optional max_samples
, shuffle
, and seed
parameters, which provide support for importing a small subset of a
potentially large dataset:
# Import a random subset of 10 samples from the dataset
fiftyone datasets create \
--name $NAME --dataset-dir $DATASET_DIR --type $TYPE \
--kwargs \
max_samples=10 \
shuffle=True \
seed=51
Supported formats¶
Each supported dataset type is represented by a subclass of
fiftyone.types.Dataset
, which is used by the Python library and CLI to
refer to the corresponding dataset format when reading the dataset from disk.
Dataset Type |
Description |
---|---|
A directory of images. |
|
A directory of videos. |
|
A directory of media files. |
|
A labeled dataset consisting of images and their associated classification labels in a simple JSON format. |
|
A directory tree whose subfolders define an image classification dataset. |
|
A directory tree whose subfolders define a video classification dataset. |
|
A labeled dataset consisting of images and their associated classification labels stored as TFRecords. |
|
A labeled dataset consisting of images and their associated object detections stored in a simple JSON format. |
|
A labeled dataset consisting of videos and their associated temporal detections in a simple JSON format. |
|
A labeled dataset consisting of images and their associated object detections saved in COCO Object Detection Format. |
|
A labeled dataset consisting of images and their associated object detections saved in VOC format. |
|
A labeled dataset consisting of images and their associated object detections saved in KITTI format. |
|
A labeled dataset consisting of images and their associated object detections saved in YOLOv4 format. |
|
A labeled dataset consisting of images and their associated object detections saved in YOLOv5 format. |
|
A labeled dataset consisting of images and their associated object detections stored as TFRecords in TF Object Detection API format . |
|
A labeled dataset consisting of images and their associated semantic segmentations stored as images on disk. |
|
A labeled dataset consisting of images and their associated multitask labels stored in CVAT image format. |
|
A labeled dataset consisting of videos and their associated multitask labels stored in CVAT video format. |
|
A labeled dataset consisting of images and their associated multitask labels stored in OpenLABEL format. |
|
A labeled dataset consisting of videos and their associated multitask labels stored in OpenLABEL format. |
|
A labeled dataset consisting of images and their associated multitask predictions stored in ETA ImageLabels format . |
|
A labeled dataset consisting of images and their associated multitask predictions saved in Berkeley DeepDrive (BDD) format. |
|
A labeled dataset consisting of images or videos and their associated field values stored as columns of a CSV file. |
|
An image dataset whose image data and optional properties are stored in DICOM format. |
|
An image or video dataset whose location data and labels are stored in GeoJSON format. |
|
An image dataset whose image and geolocation data are stored in GeoTIFF format. |
|
A labeled dataset consisting of videos and their associated multitask predictions stored in ETA VideoLabels format . |
|
A dataset consisting of an entire serialized |
|
Import datasets in custom formats by defining your own |
ImageDirectory¶
The fiftyone.types.ImageDirectory
type represents a directory of
images.
Datasets of this type are read in the following format:
<dataset_dir>/
<filename1>.<ext>
<filename2>.<ext>
where files with non-image MIME types are omitted.
By default, the dataset may contain nested subfolders of images, which are recursively listed.
Note
See ImageDirectoryImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a directory of images as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/images-dir" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.ImageDirectory, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/images-dir
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageDirectory
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a directory of images in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/images-dir
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageDirectory
VideoDirectory¶
The fiftyone.types.VideoDirectory
type represents a directory of
videos.
Datasets of this type are read in the following format:
<dataset_dir>/
<filename1>.<ext>
<filename2>.<ext>
where files with non-video MIME types are omitted.
By default, the dataset may contain nested subfolders of videos, which are recursively listed.
Note
See VideoDirectoryImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a directory of videos as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/videos-dir" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.VideoDirectory, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/videos-dir
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VideoDirectory
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a directory of videos in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/videos-dir
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VideoDirectory
MediaDirectory¶
The fiftyone.types.MediaDirectory
type represents a directory of media
files.
Datasets of this type are read in the following format:
<dataset_dir>/
<filename1>.<ext>
<filename2>.<ext>
Note
All files must have the same media type (image, video, point cloud, etc.)
By default, the dataset may contain nested subfolders of media files, which are recursively listed.
Note
See MediaDirectoryImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a directory of media files as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/media-dir" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.MediaDirectory, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/media-dir
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.MediaDirectory
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a directory of media in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/media-dir
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.MediaDirectory
FiftyOneImageClassificationDataset¶
The fiftyone.types.FiftyOneImageClassificationDataset
type represents
a labeled dataset consisting of images and their associated classification
label(s) stored in a simple JSON format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.json
In the simplest case, labels.json
can be a JSON file in the following format:
{
"classes": [
"<labelA>",
"<labelB>",
...
],
"labels": {
"<uuid1>": <target>,
"<uuid2>": <target>,
...
}
}
If the classes
field is provided, the target
values are class IDs that are
mapped to class label strings via classes[target]
. If no classes
field is
provided, then the target
values directly store the label strings.
The target value in labels
for unlabeled images is None
(or missing).
The UUIDs can also be relative paths like path/to/uuid
, in which case the
images in data/
should be arranged in nested subfolders with the
corresponding names, or they can be absolute paths, in which case the images
may or may not be in data/
.
Alternatively, labels.json
can contain predictions with associated
confidences and additional attributes in the following format:
{
"classes": [
"<labelA>",
"<labelB>",
...
],
"labels": {
"<uuid1>": {
"label": <target>,
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
"<uuid2>": {
"label": <target>,
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
...
}
}
You can also load multilabel classifications in this format by storing lists
of targets in labels.json
:
{
"classes": [
"<labelA>",
"<labelB>",
...
],
"labels": {
"<uuid1>": [<target1>, <target2>, ...],
"<uuid2>": [<target1>, <target2>, ...],
...
}
}
where the target values in labels
can be class strings, class IDs, or dicts
in the format described above defining class labels, confidences, and optional
attributes.
Note
See FiftyOneImageClassificationDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image classification dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/image-classification-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneImageClassificationDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/image-classification-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageClassificationDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view an image classification dataset in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/image-classification-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageClassificationDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.FiftyOneImageClassificationDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.FiftyOneImageClassificationDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the UUIDs in your labels are absolute paths to the source media, then
you can omit the data_path
parameter from the example above.
ImageClassificationDirectoryTree¶
The fiftyone.types.ImageClassificationDirectoryTree
type represents a
directory tree whose subfolders define an image classification dataset.
Datasets of this type are read in the following format:
<dataset_dir>/
<classA>/
<image1>.<ext>
<image2>.<ext>
...
<classB>/
<image1>.<ext>
<image2>.<ext>
...
...
Unlabeled images are stored in a subdirectory named _unlabeled
.
Each class folder may contain nested subfolders of images.
Note
See ImageClassificationDirectoryTreeImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image classification directory tree stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/image-classification-dir-tree" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.ImageClassificationDirectoryTree, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/image-classification-dir-tree
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageClassificationDirectoryTree
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view an image classification directory tree in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/image-classification-dir-tree
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageClassificationDirectoryTree
VideoClassificationDirectoryTree¶
The fiftyone.types.VideoClassificationDirectoryTree
type represents a
directory tree whose subfolders define a video classification dataset.
Datasets of this type are read in the following format:
<dataset_dir>/
<classA>/
<video1>.<ext>
<video2>.<ext>
...
<classB>/
<video1>.<ext>
<video2>.<ext>
...
...
Unlabeled videos are stored in a subdirectory named _unlabeled
.
Each class folder may contain nested subfolders of videos.
Note
See VideoClassificationDirectoryTreeImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a video classification directory tree stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/video-classification-dir-tree" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.VideoClassificationDirectoryTree, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/video-classification-dir-tree
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VideoClassificationDirectoryTree
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a video classification directory tree in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/video-classification-dir-tree
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VideoClassificationDirectoryTree
TFImageClassificationDataset¶
The fiftyone.types.TFImageClassificationDataset
type represents a
labeled dataset consisting of images and their associated classification labels
stored as
TFRecords.
Datasets of this type are read in the following format:
<dataset_dir>/
tf.records-?????-of-?????
where the features of the (possibly sharded) TFRecords are stored in the following format:
{
# Image dimensions
"height": tf.io.FixedLenFeature([], tf.int64),
"width": tf.io.FixedLenFeature([], tf.int64),
"depth": tf.io.FixedLenFeature([], tf.int64),
# Image filename
"filename": tf.io.FixedLenFeature([], tf.int64),
# The image extension
"format": tf.io.FixedLenFeature([], tf.string),
# Encoded image bytes
"image_bytes": tf.io.FixedLenFeature([], tf.string),
# Class label string
"label": tf.io.FixedLenFeature([], tf.string, default_value=""),
}
For unlabeled samples, the TFRecords do not contain label
features.
Note
See TFImageClassificationDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image classification dataset stored as a directory of TFRecords in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/tf-image-classification-dataset" images_dir = "/path/for/images" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.TFImageClassificationDataset, images_dir=images_dir, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
When the above command is executed, the images in the TFRecords will be
written to the provided images_dir
, which is required because FiftyOne
datasets must make their images available as individual files on disk.
NAME=my-dataset
DATASET_DIR=/path/to/tf-image-classification-dataset
IMAGES_DIR=/path/for/images
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.TFImageClassificationDataset \
--kwargs images_dir=$IMAGES_DIR
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
When the above command is executed, the images in the TFRecords will be
written to the provided IMAGES_DIR
, which is required because FiftyOne
datasets must make their images available as individual files on disk.
To view an image classification dataset stored as a directory of TFRecords in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/tf-image-classification-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.TFImageClassificationDataset
Note
You can provide the tf_records_path
argument instead of dataset_dir
in
the examples above to directly specify the path to the TFRecord(s) to load.
See TFImageClassificationDatasetImporter
for details.
FiftyOneImageDetectionDataset¶
The fiftyone.types.FiftyOneImageDetectionDataset
type represents a
labeled dataset consisting of images and their associated object detections
stored in a simple JSON format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.json
where labels.json
is a JSON file in the following format:
{
"classes": [
<labelA>,
<labelB>,
...
],
"labels": {
<uuid1>: [
{
"label": <target>,
"bounding_box": [
<top-left-x>, <top-left-y>, <width>, <height>
],
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
...
],
<uuid2>: [
...
],
...
}
}
and where the bounding box coordinates are expressed as relative values in
[0, 1] x [0, 1]
.
If the classes
field is provided, the target
values are class IDs that are
mapped to class label strings via classes[target]
. If no classes
field is
provided, then the target
values directly store the label strings.
The target value in labels
for unlabeled images is None
(or missing).
The UUIDs can also be relative paths like path/to/uuid
, in which case the
images in data/
should be arranged in nested subfolders with the
corresponding names, or they can be absolute paths, in which case the images
may or may not be in data/
.
Note
See FiftyOneImageDetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image detection dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/image-detection-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneImageDetectionDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/image-detection-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageDetectionDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view an image detection dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/image-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageDetectionDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.FiftyOneImageDetectionDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.FiftyOneImageDetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the UUIDs in your labels are absolute paths to the source media, then
you can omit the data_path
parameter from the example above.
FiftyOneTemporalDetectionDataset¶
The fiftyone.types.FiftyOneTemporalDetectionDataset
type represents a
labeled dataset consisting of videos and their associated temporal detections
stored in a simple JSON format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.json
where labels.json
is a JSON file in the following format:
{
"classes": [
"<labelA>",
"<labelB>",
...
],
"labels": {
"<uuid1>": [
{
"label": <target>,
"support": [<first-frame>, <last-frame>],
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
{
"label": <target>,
"support": [<first-frame>, <last-frame>],
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
...
],
"<uuid2>": [
{
"label": <target>,
"timestamps": [<start-timestamp>, <stop-timestamp>],
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
{
"label": <target>,
"timestamps": [<start-timestamp>, <stop-timestamp>],
"confidence": <optional-confidence>,
"attributes": {
<optional-name>: <optional-value>,
...
}
},
],
...
}
}
The temporal range of each detection can be specified either via the support
key, which should contain the [first, last]
frame numbers of the detection,
or the timestamps
key, which should contain the [start, stop]
timestamps of
the detection in seconds.
If the classes
field is provided, the target
values are class IDs that are
mapped to class label strings via classes[target]
. If no classes
field is
provided, then the target
values directly store the label strings.
Unlabeled videos can have a None
(or missing) key in labels
.
The UUIDs can also be relative paths like path/to/uuid
, in which case the
images in data/
should be arranged in nested subfolders with the
corresponding names, or they can be absolute paths, in which case the images
may or may not be in data/
.
Note
See FiftyOneTemporalDetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a temporal detection dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/temporal-detection-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneTemporalDetectionDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/temporal-detection-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneTemporalDetectionDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a temporal detection dataset in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/temporal-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneTemporalDetectionDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.FiftyOneTemporalDetectionDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.FiftyOneTemporalDetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the UUIDs in your labels are absolute paths to the source media, then
you can omit the data_path
parameter from the example above.
COCODetectionDataset¶
The fiftyone.types.COCODetectionDataset
type represents a labeled
dataset consisting of images and their associated object detections saved in
COCO Object Detection Format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<filename0>.<ext>
<filename1>.<ext>
...
labels.json
where labels.json
is a JSON file in the following format:
{
"info": {...},
"licenses": [
{
"id": 1,
"name": "Attribution-NonCommercial-ShareAlike License",
"url": "http://creativecommons.org/licenses/by-nc-sa/2.0/",
},
...
],
"categories": [
...
{
"id": 2,
"name": "cat",
"supercategory": "animal",
"keypoints": ["nose", "head", ...],
"skeleton": [[12, 14], [14, 16], ...]
},
...
],
"images": [
{
"id": 1,
"license": 1,
"file_name": "<filename0>.<ext>",
"height": 480,
"width": 640,
"date_captured": null
},
...
],
"annotations": [
{
"id": 1,
"image_id": 1,
"category_id": 2,
"bbox": [260, 177, 231, 199],
"segmentation": [...],
"keypoints": [224, 226, 2, ...],
"num_keypoints": 10,
"score": 0.95,
"area": 45969,
"iscrowd": 0
},
...
]
}
See this page for a full
specification of the segmentation
field.
For unlabeled datasets, labels.json
does not contain an annotations
field.
The file_name
attribute of the labels file encodes the location of the
corresponding images, which can be any of the following:
The filename of an image in the
data/
folderA relative path like
data/sub/folder/filename.ext
specifying the relative path to the image in a nested subfolder ofdata/
An absolute path to an image, which may or may not be in the
data/
folder
Note
See COCODetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a COCO detection dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/coco-detection-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.COCODetectionDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/coco-detection-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.COCODetectionDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a COCO detection dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/coco-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.COCODetectionDataset
Note
By default, all supported label types are loaded (detections,
segmentations, and keypoints). However, you can choose specific type(s) to
load by passing the optional label_types
argument to methods like
Dataset.from_dir()
:
# Only load bounding boxes
dataset = fo.Dataset.from_dir(
dataset_type=fo.types.COCODetectionDataset,
label_types=["detections"],
...
)
See COCODetectionDatasetImporter
for complete documentation of the available COCO import options.
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/coco-labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.COCODetectionDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/coco-labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.COCODetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the file_name
key of your labels contains absolute paths to the source
media, then you can omit the data_path
parameter from the example above.
If you have an existing dataset and corresponding model predictions stored in
COCO format, then you can use
add_coco_labels()
to conveniently
add the labels to the dataset. The example below demonstrates a round-trip
export and then re-import of both images-and-labels and labels-only data in
COCO format:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import fiftyone as fo import fiftyone.zoo as foz import fiftyone.utils.coco as fouc dataset = foz.load_zoo_dataset("quickstart") classes = dataset.distinct("predictions.detections.label") # Export images and ground truth labels to disk dataset.export( export_dir="/tmp/coco", dataset_type=fo.types.COCODetectionDataset, label_field="ground_truth", classes=classes, ) # Export predictions dataset.export( dataset_type=fo.types.COCODetectionDataset, labels_path="/tmp/coco/predictions.json", label_field="predictions", classes=classes, ) # Now load ground truth labels into a new dataset dataset2 = fo.Dataset.from_dir( dataset_dir="/tmp/coco", dataset_type=fo.types.COCODetectionDataset, label_field="ground_truth", ) # And add model predictions fouc.add_coco_labels( dataset2, "predictions", "/tmp/coco/predictions.json", classes, ) # Verify that ground truth and predictions were imported as expected print(dataset.count("ground_truth.detections")) print(dataset2.count("ground_truth.detections")) print(dataset.count("predictions.detections")) print(dataset2.count("predictions.detections")) |
Note
See add_coco_labels()
for a
complete description of the available syntaxes for loading COCO-formatted
predictions to an existing dataset.
VOCDetectionDataset¶
The fiftyone.types.VOCDetectionDataset
type represents a labeled
dataset consisting of images and their associated object detections saved in
VOC format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.xml
<uuid2>.xml
...
where the labels XML files are in the following format:
<annotation>
<folder></folder>
<filename>image.ext</filename>
<path>/path/to/dataset-dir/data/image.ext</path>
<source>
<database></database>
</source>
<size>
<width>640</width>
<height>480</height>
<depth>3</depth>
</size>
<segmented></segmented>
<object>
<name>cat</name>
<pose></pose>
<truncated>0</truncated>
<difficult>0</difficult>
<occluded>0</occluded>
<bndbox>
<xmin>256</xmin>
<ymin>200</ymin>
<xmax>450</xmax>
<ymax>400</ymax>
</bndbox>
</object>
<object>
<name>dog</name>
<pose></pose>
<truncated>1</truncated>
<difficult>1</difficult>
<occluded>1</occluded>
<bndbox>
<xmin>128</xmin>
<ymin>100</ymin>
<xmax>350</xmax>
<ymax>300</ymax>
</bndbox>
</object>
...
</annotation>
where either the <filename>
and/or <path>
field of the annotations may be
populated to specify the corresponding source image.
Unlabeled images have no corresponding file in labels/
.
The data/
and labels/
files may contain nested subfolders of parallelly
organized images and masks.
Note
See VOCDetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a VOC detection dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/voc-detection-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.VOCDetectionDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/voc-detection-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VOCDetectionDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a VOC detection dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/voc-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.VOCDetectionDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/voc-labels" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.VOCDetectionDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/voc-labels
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.VOCDetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the <path>
field of your labels are populated with the absolute paths
to the source media, then you can omit the data_path
parameter from the
example above.
KITTIDetectionDataset¶
The fiftyone.types.KITTIDetectionDataset
type represents a labeled
dataset consisting of images and their associated object detections saved in
KITTI format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.txt
<uuid2>.txt
...
where the labels TXT files are space-delimited files where each row corresponds to an object and the 15 (and optional 16th score) columns have the following meanings:
# of columns |
Name |
Description |
Default |
---|---|---|---|
1 |
type |
The object label |
|
1 |
truncated |
A float in |
0 |
1 |
occluded |
An int in |
0 |
1 |
alpha |
Observation angle of the object, in |
0 |
4 |
bbox |
2D bounding box of object in the image in pixels, in the
format |
|
1 |
dimensions |
3D object dimensions, in meters, in the format
|
0 |
1 |
location |
3D object location |
0 |
1 |
rotation_y |
Rotation around the y-axis in camera coordinates, in
|
0 |
1 |
score |
|
When reading datasets of this type, all columns after the four bbox
columns
are optional.
Unlabeled images have no corresponding file in labels/
.
The data/
and labels/
files may contain nested subfolders of parallelly
organized images and masks.
Note
See KITTIDetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a KITTI detection dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/kitti-detection-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.KITTIDetectionDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/kitti-detection-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.KITTIDetectionDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a KITTI detection dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/kitti-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.KITTIDetectionDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/kitti-labels" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.KITTIDetectionDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/kitti-labels
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.KITTIDetectionDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
YOLOv4Dataset¶
The fiftyone.types.YOLOv4Dataset
type represents a labeled dataset
consisting of images and their associated object detections saved in
YOLOv4 format.
Datasets of this type are read in the following format:
<dataset_dir>/
obj.names
images.txt
data/
<uuid1>.<ext>
<uuid1>.txt
<uuid2>.<ext>
<uuid2>.txt
...
where obj.names
contains the object class labels:
<label-0>
<label-1>
...
and images.txt
contains the list of images in data/
:
data/<uuid1>.<ext>
data/<uuid2>.<ext>
...
The image paths in images.txt
can be specified as either relative (to the
location of file) or as absolute paths. Alternatively, this file can be
omitted, in which case the data/
directory is listed to determine the
available images.
The TXT files in data/
are space-delimited files where each row corresponds
to an object in the image of the same name, in one of the following formats:
# Detections
<target> <x-center> <y-center> <width> <height>
<target> <x-center> <y-center> <width> <height> <confidence>
# Polygons
<target> <x1> <y1> <x2> <y2> <x3> <y3> ...
where <target>
is the zero-based integer index of the object class label from
obj.names
, all coordinates are expressed as relative values in
[0, 1] x [0, 1]
, and <confidence>
is an optional confidence in [0, 1]
.
Unlabeled images have no corresponding TXT file in data/
.
The data/
folder may contain nested subfolders.
Note
By default, all annotations are loaded as Detections
, converting any
polylines to tight bounding boxes if necessary. However, you can choose to
load YOLO annotations as Polylines
by passing the optional label_type
argument to methods like
Dataset.from_dir()
:
# Load annotations as polygons
dataset = fo.Dataset.from_dir(
dataset_type=fo.types.YOLOv4Dataset,
label_type="polylines",
...
)
See YOLOv4DatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a YOLOv4 dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/yolov4-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.YOLOv4Dataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/yolov4-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.YOLOv4Dataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a YOLOv4 dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/yolov4-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.YOLOv4Dataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/yolo-labels" classes = ["list", "of", "classes"] # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.YOLOv4Dataset, data_path=data_path, labels_path=labels_path, classes=classes, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/yolo-labels
OBJECTS_PATH=/path/to/obj.names
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.YOLOv4Dataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH \
objects_path=$OBJECTS_PATH
If you have an existing dataset and corresponding model predictions stored in
YOLO format, then you can use
add_yolo_labels()
to conveniently
add the labels to the dataset.
The example below demonstrates a round-trip export and then re-import of both images-and-labels and labels-only data in YOLO format:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | import fiftyone as fo import fiftyone.zoo as foz import fiftyone.utils.yolo as fouy dataset = foz.load_zoo_dataset("quickstart") classes = dataset.distinct("predictions.detections.label") # Export images and ground truth labels to disk dataset.export( export_dir="/tmp/yolov4", dataset_type=fo.types.YOLOv4Dataset, label_field="ground_truth", classes=classes, ) # Export predictions dataset.export( dataset_type=fo.types.YOLOv4Dataset, labels_path="/tmp/yolov4/predictions", label_field="predictions", classes=classes, ) # Now load ground truth labels into a new dataset dataset2 = fo.Dataset.from_dir( dataset_dir="/tmp/yolov4", dataset_type=fo.types.YOLOv4Dataset, label_field="ground_truth", ) # And add model predictions fouy.add_yolo_labels( dataset2, "predictions", "/tmp/yolov4/predictions", classes, ) # Verify that ground truth and predictions were imported as expected print(dataset.count("ground_truth.detections")) print(dataset2.count("ground_truth.detections")) print(dataset.count("predictions.detections")) print(dataset2.count("predictions.detections")) |
Note
See add_yolo_labels()
for a
complete description of the available syntaxes for loading YOLO-formatted
predictions to an existing dataset.
YOLOv5Dataset¶
The fiftyone.types.YOLOv5Dataset
type represents a labeled dataset
consisting of images and their associated object detections saved in
YOLOv5 format.
Datasets of this type are read in the following format:
<dataset_dir>/
dataset.yaml
images/
train/
<uuid1>.<ext>
<uuid2>.<ext>
...
val/
<uuid3>.<ext>
<uuid4>.<ext>
...
labels/
train/
<uuid1>.txt
<uuid2>.txt
...
val/
<uuid3>.txt
<uuid4>.txt
...
where dataset.yaml
contains the following information:
path: <dataset_dir> # optional
train: ./images/train/
val: ./images/val/
names:
0: list
1: of
2: classes
...
See this page for a full
description of the possible format of dataset.yaml
. In particular, the
dataset may contain one or more splits with arbitrary names, as the specific
split being imported or exported is specified by the split
argument to
fiftyone.utils.yolo.YOLOv5DatasetImporter
. Also, dataset.yaml
can be
located outside of <dataset_dir>
as long as the optional path
is provided.
Note
Any relative paths in dataset.yaml
or per-split TXT files are interpreted
relative to the directory containing these files, not your current working
directory.
The TXT files in labels/
are space-delimited files where each row corresponds
to an object in the image of the same name, in one of the following formats:
# Detections
<target> <x-center> <y-center> <width> <height>
<target> <x-center> <y-center> <width> <height> <confidence>
# Polygons
<target> <x1> <y1> <x2> <y2> <x3> <y3> ...
where <target>
is the zero-based integer index of the object class label from
names
, all coordinates are expressed as relative values in [0, 1] x [0, 1]
,
and <confidence>
is an optional confidence in [0, 1]
.
Unlabeled images have no corresponding TXT file in labels/
. The label file
path for each image is obtained by replacing images/
with labels/
in the
respective image path.
The image and labels directories for a given split may contain nested subfolders of parallelly organized images and labels.
Note
By default, all annotations are loaded as Detections
, converting any
polylines to tight bounding boxes if necessary. However, you can choose to
load YOLO annotations as Polylines
by passing the optional label_type
argument to methods like
Dataset.from_dir()
:
# Load annotations as polygons
dataset = fo.Dataset.from_dir(
dataset_type=fo.types.YOLOv5Dataset,
label_type="polylines",
...
)
See YOLOv5DatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a YOLOv5 dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/yolov5-dataset" # The splits to load splits = ["train", "val"] # Load the dataset, using tags to mark the samples in each split dataset = fo.Dataset(name) for split in splits: dataset.add_dir( dataset_dir=dataset_dir, dataset_type=fo.types.YOLOv5Dataset, split=split, tags=split, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
If you have an existing dataset and corresponding model predictions stored in
YOLO format, then you can use
add_yolo_labels()
to conveniently
add the labels to the dataset.
The example below demonstrates a round-trip export and then re-import of both images-and-labels and labels-only data in YOLO format:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | import fiftyone as fo import fiftyone.zoo as foz import fiftyone.utils.yolo as fouy dataset = foz.load_zoo_dataset("quickstart") classes = dataset.distinct("predictions.detections.label") # YOLOv5 format supports splits, so let's grab only the `validation` split view = dataset.match_tags("validation") # Export images and ground truth labels to disk view.export( export_dir="/tmp/yolov5", dataset_type=fo.types.YOLOv5Dataset, split="validation", label_field="ground_truth", classes=classes, ) # Export predictions view.export( dataset_type=fo.types.YOLOv5Dataset, labels_path="/tmp/yolov5/predictions/validation", label_field="predictions", classes=classes, ) # Now load ground truth labels into a new dataset dataset2 = fo.Dataset.from_dir( dataset_dir="/tmp/yolov5", dataset_type=fo.types.YOLOv5Dataset, split="validation", label_field="ground_truth", ) # And add model predictions fouy.add_yolo_labels( dataset2, "predictions", "/tmp/yolov5/predictions/validation", classes, ) # Verify that ground truth and predictions were imported as expected print(view.count("ground_truth.detections")) print(dataset2.count("ground_truth.detections")) print(view.count("predictions.detections")) print(dataset2.count("predictions.detections")) |
Note
See add_yolo_labels()
for a
complete description of the available syntaxes for loading YOLO-formatted
predictions to an existing dataset.
TFObjectDetectionDataset¶
The fiftyone.types.TFObjectDetectionDataset
type represents a labeled
dataset consisting of images and their associated object detections stored as
TFRecords in
TF Object Detection API format.
Datasets of this type are read in the following format:
<dataset_dir>/
tf.records-?????-of-?????
where the features of the (possibly sharded) TFRecords are stored in the following format:
{
# Image dimensions
"image/height": tf.io.FixedLenFeature([], tf.int64),
"image/width": tf.io.FixedLenFeature([], tf.int64),
# Image filename is used for both of these when writing
"image/filename": tf.io.FixedLenFeature([], tf.string),
"image/source_id": tf.io.FixedLenFeature([], tf.string),
# Encoded image bytes
"image/encoded": tf.io.FixedLenFeature([], tf.string),
# Image format, either `jpeg` or `png`
"image/format": tf.io.FixedLenFeature([], tf.string),
# Normalized bounding box coordinates in `[0, 1]`
"image/object/bbox/xmin": tf.io.FixedLenSequenceFeature(
[], tf.float32, allow_missing=True
),
"image/object/bbox/xmax": tf.io.FixedLenSequenceFeature(
[], tf.float32, allow_missing=True
),
"image/object/bbox/ymin": tf.io.FixedLenSequenceFeature(
[], tf.float32, allow_missing=True
),
"image/object/bbox/ymax": tf.io.FixedLenSequenceFeature(
[], tf.float32, allow_missing=True
),
# Class label string
"image/object/class/text": tf.io.FixedLenSequenceFeature(
[], tf.string, allow_missing=True
),
# Integer class ID
"image/object/class/label": tf.io.FixedLenSequenceFeature(
[], tf.int64, allow_missing=True
),
}
The TFRecords for unlabeled samples do not contain image/object/*
features.
Note
See TFObjectDetectionDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an object detection dataset stored as a directory of TFRecords in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/tf-object-detection-dataset" images_dir = "/path/for/images" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.TFObjectDetectionDataset, images_dir=images_dir, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
When the above command is executed, the images in the TFRecords will be
written to the provided images_dir
, which is required because FiftyOne
datasets must make their images available as individual files on disk.
NAME=my-dataset
DATASET_DIR=/path/to/tf-object-detection-dataset
IMAGES_DIR=/path/for/images
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.TFObjectDetectionDataset \
--kwargs images_dir=$IMAGES_DIR
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
When the above command is executed, the images in the TFRecords will be
written to the provided IMAGES_DIR
, which is required because FiftyOne
datasets must make their images available as individual files on disk.
To view an object detection dataset stored as a directory of TFRecords in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/tf-object-detection-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.TFObjectDetectionDataset
Note
You can provide the tf_records_path
argument instead of dataset_dir
in
the examples above to directly specify the path to the TFRecord(s) to load.
See TFObjectDetectionDatasetImporter
for details.
ImageSegmentationDirectory¶
The fiftyone.types.ImageSegmentationDirectory
type represents a
labeled dataset consisting of images and their associated semantic
segmentations stored as images on disk.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<filename1>.<ext>
<filename2>.<ext>
...
labels/
<filename1>.<ext>
<filename2>.<ext>
...
where labels/
contains the semantic segmentations stored as images.
Unlabeled images have no corresponding file in labels/
.
The data/
and labels/
files may contain nested subfolders of parallelly
organized images and masks.
Note
See ImageSegmentationDirectoryImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image segmentation dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/image-segmentation-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.ImageSegmentationDirectory, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/image-segmentation-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageSegmentationDirectory
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view an image segmentation dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/image-segmentation-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.ImageSegmentationDirectory
You can also independently specify the locations of the masks and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/masks" # Import dataset by explicitly providing paths to the source media and masks dataset = fo.Dataset.from_dir( dataset_type=fo.types.ImageSegmentationDirectory, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/masks
# Import dataset by explicitly providing paths to the source media and masks
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.ImageSegmentationDirectory \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
CVATImageDataset¶
The fiftyone.types.CVATImageDataset
type represents a labeled dataset
consisting of images and their associated tags and object detections stored in
CVAT image format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.xml
where labels.xml
is an XML file in the following format:
<?xml version="1.0" encoding="utf-8"?>
<annotations>
<version>1.1</version>
<meta>
<task>
<id>0</id>
<name>task-name</name>
<size>51</size>
<mode>annotation</mode>
<overlap></overlap>
<bugtracker></bugtracker>
<flipped>False</flipped>
<created>2017-11-20 11:51:51.000000+00:00</created>
<updated>2017-11-20 11:51:51.000000+00:00</updated>
<labels>
<label>
<name>car</name>
<attributes>
<attribute>
<name>type</name>
<values>coupe\\nsedan\\ntruck</values>
</attribute>
...
</attributes>
</label>
<label>
<name>traffic_line</name>
<attributes>
<attribute>
<name>color</name>
<values>white\\nyellow</values>
</attribute>
...
</attributes>
</label>
...
</labels>
</task>
<segments>
<segment>
<id>0</id>
<start>0</start>
<stop>50</stop>
<url></url>
</segment>
</segments>
<owner>
<username></username>
<email></email>
</owner>
<dumped>2017-11-20 11:51:51.000000+00:00</dumped>
</meta>
<image id="0" name="<uuid1>.<ext>" width="640" height="480">
<tag label="urban"></tag>
...
<box label="car" xtl="100" ytl="50" xbr="325" ybr="190" occluded="0">
<attribute name="type">sedan</attribute>
...
</box>
...
<polygon label="car" points="561.30,916.23;561.30,842.77;...;560.20,966.67" occluded="0">
<attribute name="make">Honda</attribute>
...
</polygon>
...
<polyline label="traffic_line" points="462.10,0.00;126.80,1200.00" occluded="0">
<attribute name="color">yellow</attribute>
...
</polyline>
...
<points label="wheel" points="574.90,939.48;1170.16,907.90;...;600.16,459.48" occluded="0">
<attribute name="location">front_driver_side</attribute>
...
</points>
...
</image>
...
<image id="50" name="<uuid51>.<ext>" width="640" height="480">
...
</image>
</annotations>
Unlabeled images have no corresponding image
tag in labels.xml
.
The name
field of the <image>
tags in the labels file encodes the location
of the corresponding images, which can be any of the following:
The filename of an image in the
data/
folderA relative path like
data/sub/folder/filename.ext
specifying the relative path to the image in a nested subfolder ofdata/
An absolute path to an image, which may or may not be in the
data/
folder
Note
See CVATImageDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a CVAT image dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/cvat-image-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.CVATImageDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/cvat-image-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CVATImageDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a CVAT image dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/cvat-image-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CVATImageDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/cvat-labels.xml" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.CVATImageDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/cvat-labels.xml
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.CVATImageDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the name
key of your labels contains absolute paths to the source
media, then you can omit the data_path
parameter from the example above.
CVATVideoDataset¶
The fiftyone.types.CVATVideoDataset
type represents a labeled dataset
consisting of videos and their associated object detections stored in
CVAT video format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.xml
<uuid2>.xml
...
where the labels XML files are stored in the following format:
<?xml version="1.0" encoding="utf-8"?>
<annotations>
<version>1.1</version>
<meta>
<task>
<id>task-id</id>
<name>task-name</name>
<size>51</size>
<mode>interpolation</mode>
<overlap></overlap>
<bugtracker></bugtracker>
<flipped>False</flipped>
<created>2017-11-20 11:51:51.000000+00:00</created>
<updated>2017-11-20 11:51:51.000000+00:00</updated>
<labels>
<label>
<name>car</name>
<attributes>
<attribute>
<name>type</name>
<values>coupe\\nsedan\\ntruck</values>
</attribute>
...
</attributes>
</label>
<label>
<name>traffic_line</name>
<attributes>
<attribute>
<name>color</name>
<values>white\\nyellow</values>
</attribute>
...
</attributes>
</label>
...
</labels>
</task>
<segments>
<segment>
<id>0</id>
<start>0</start>
<stop>50</stop>
<url></url>
</segment>
</segments>
<owner>
<username></username>
<email></email>
</owner>
<original_size>
<width>640</width>
<height>480</height>
</original_size>
<dumped>2017-11-20 11:51:51.000000+00:00</dumped>
</meta>
<track id="0" label="car">
<box frame="0" xtl="100" ytl="50" xbr="325" ybr="190" outside="0" occluded="0" keyframe="1">
<attribute name="type">sedan</attribute>
...
</box>
...
</track>
<track id="1" label="car">
<polygon frame="0" points="561.30,916.23;561.30,842.77;...;560.20,966.67" outside="0" occluded="0" keyframe="1">
<attribute name="make">Honda</attribute>
...
</polygon>
...
</track>
...
<track id="10" label="traffic_line">
<polyline frame="10" points="462.10,0.00;126.80,1200.00" outside="0" occluded="0" keyframe="1">
<attribute name="color">yellow</attribute>
...
</polyline>
...
</track>
...
<track id="88" label="wheel">
<points frame="176" points="574.90,939.48;1170.16,907.90;...;600.16,459.48" outside="0" occluded="0" keyframe="1">
<attribute name="location">front_driver_side</attribute>
...
</points>
...
</track>
</annotations>
Unlabeled videos have no corresponding file in labels/
.
The data/
and labels/
files may contain nested subfolders of parallelly
organized images and labels.
Note
See CVATVideoDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a CVAT video dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/cvat-video-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.CVATVideoDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/cvat-video-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CVATVideoDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a CVAT video dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/cvat-video-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CVATVideoDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/cvat-labels" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.CVATVideoDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/cvat-labels
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.CVATVideoDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
OpenLABELImageDataset¶
The fiftyone.types.OpenLABELImageDataset
type represents a labeled
dataset consisting of images and their associated multitask predictions stored =
in OpenLABEL format.
OpenLABEL is a flexible format which allows labels to be stored in a variety of different ways with respect to the corresponding media files. The following enumerates the possible structures in which media data and OpenLABEL formatted label files can be stored in ways that is understood by FiftyOne:
One label file per image. Each label contains only the metadata and labels associated with the image of the same name. In this case, the
labels_path
argument is expected to be a directory, if provided:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.json
<uuid2>.json
...
One label file for all images. The label file contains all of the metadata and labels associated with every image. In this case, there needs to be additional information provided in the label file to match labels to images. Specifically, the image filepath corresponding to a label must be stored as a stream:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.json
Multiple label files, each corresponding to one or more images. This case is similar to when there is a single label file, except that the label information may be spread out over multiple files. Since the filenames cannot be used to match labels to images, the image filepaths must again be stored as streams in the labels files:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<labels-filename1>.json
<labels-filename2>.json
...
As for the actual structure of the labels files themselves, labels are stored in one or more JSON files and can follow a variety of formats. In general following this format:
Note
All object information stored in the frames
key is applied to the
corresponding image.
{
"openlabel": {
"metadata": {
"schema_version": "1.0.0",
"uri": "/path/to/<uuid>.<ext>",
},
"objects": {
"object_uuid1": {
"name": "instance1",
"type": "label1",
"object_data": {
"bbox": [
{
"name": "shape",
"val": [
center-x,
center-y,
width,
height
]
}
]
}
},
"object_uuid2": {
"name": "instance1",
"type": "label2",
"object_data": {}, # DEFINED IN FRAMES
}
},
"frames": {
"0": {
"frame_properties": {
"streams": {
"Camera1": {
"uri": "<uuid>.<ext>"
}
}
},
"objects": {
"object_uuid2": {
"object_data": {
"poly2d": [
{
"attributes": {
"boolean": [
{
"name": "is_hole",
"val": false
}
],
"text": [
{ # IF NOT PROVIDED OTHERWISE
"name": "stream",
"val": "Camera1"
}
]
},
"closed": true,
"mode": "MODE_POLY2D_ABSOLUTE",
"name": "polygon_name",
"stream": "Camera1", # IF NOT IN ATTRIBUTES
"val": [
point1-x,
point1-y,
point2-x,
point2-y,
...
]
}
]
}
}
}
}
},
"streams": {
"Camera1": {
"description": "",
"stream_properties": {
"height": 480,
"width": 640
},
"type": "camera"
}
},
"ontologies": ... # NOT PARSED
"relations": ... # NOT PARSED
"resources": ... # NOT PARSED
"tags": ... # NOT PARSED
}
}
Note
See OpenLABELImageDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
If loading Keypoints
related to a given KeypointSkeleton
, then you can
provide a skeleton
and skeleton_key
argument to the
OpenLABELImageDatasetImporter
allowing you to match points in your annotations file to labels in the
KeypointSkeleton
and load the points and their attributes in the correct
order.
You can create a FiftyOne dataset from a OpenLABEL image dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/openlabel-image-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.OpenLABELImageDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/openlabel-image-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.OpenLABELImageDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a OpenLABEL image dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/openlabel-image-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.OpenLABELImageDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/openlabel-labels.json" # labels_path = "/path/to/openlabel-labels" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.OpenLABELImageDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/openlabel-labels.json
# LABELS_PATH=/path/to/openlabel-labels
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.OpenLABELImageDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
OpenLABEL is a flexible format that allows for many user-specific decisions about how to represent labels and metadata. If you have OpenLABEL-compliant data in a format not understood by the current importers, please make an issue or contribute a pull request!
OpenLABELVideoDataset¶
The fiftyone.types.OpenLABELVideoDataset
type represents a labeled
dataset consisting of videos and their associated multitask predictions stored
in OpenLABEL format.
OpenLABEL is a flexible format which allows labels to be stored in a variety of different ways with respect to the corresponding media files. The following enumerates the possible structures in which media data and OpenLABEL formatted label files can be stored in ways that is understood by FiftyOne:
One label file per video. Each label contains only the metadata and labels associated with the video of the same name. In this case, the
labels_path
argument is expected to be a directory, if provided:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.json
<uuid2>.json
...
One label file for all videos. The label file contains all of the metadata and labels associated with every video. In this case, there needs to be additional information provided in the label file to match labels to videos. Specifically, the video filepath corresponding to a label must be stored as a stream:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels.json
Multiple label files, each corresponding to one or more videos. This case is similar to when there is a single label file, except that the label information may be spread out over multiple files. Since the filenames cannot be used to match labels to videos, the video filepaths must again be stored as streams in the labels files:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<labaels-filename1>.json
<labaels-filename2>.json
...
As for the actual structure of the labels files themselves, labels are stored in one or more JSON files and can follow a variety of formats. In general following this format:
{
"openlabel": {
"metadata": {
"schema_version": "1.0.0",
"uri": "/path/to/<uuid>.<ext>",
},
"objects": {
"object_uuid1": {
"name": "instance1",
"type": "label1",
"object_data": {
"bbox": [
{
"name": "shape",
"val": [
center-x,
center-y,
width,
height
]
}
]
}
"frame_intervals": [{"frame_start": 0, "frame_end": 10}],
},
"object_uuid2": {
"name": "instance1",
"type": "label2",
"object_data": {}, # DEFINED IN FRAMES
}
},
"frames": {
"0": {
"frame_properties": {
"streams": {
"Camera1": {
"uri":"<uuid>.<ext>"
}
}
},
"objects": {
"object_uuid2": {
"object_data": {
"poly2d": [
{
"attributes": {
"boolean": [
{
"name": "is_hole",
"val": false
}
],
"text": [
{ # IF NOT PROVIDED OTHERWISE
"name": "stream",
"val": "Camera1"
}
]
},
"closed": true,
"mode": "MODE_POLY2D_ABSOLUTE",
"name": "polygon_name",
"stream": "Camera1", # IF NOT IN ATTRIBUTES
"val": [
point1-x,
point1-y,
point2-x,
point2-y,
...
]
}
]
}
}
},
...
}
},
"streams": {
"Camera1": {
"description": "",
"stream_properties": {
"height": 480,
"width": 640
},
"type": "camera"
}
},
"ontologies": ... # NOT PARSED
"relations" ... # NOT PARSED
"resources" ... # NOT PARSED
"tags": ... # NOT PARSED
}
}
Note
See OpenLABELVideoDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
If loading Keypoints
related to a given KeypointSkeleton
, then you can
provide a skeleton
and skeleton_key
argument to the
OpenLABELVideoDatasetImporter
allowing you to match points in your annotations file to labels in the
KeypointSkeleton
and load the points and their attributes in the correct
order.
You can create a FiftyOne dataset from a OpenLABEL video dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/openlabel-video-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.OpenLABELVideoDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/openlabel-video-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.OpenLABELVideoDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a OpenLABEL video dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/openlabel-video-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.OpenLABELVideoDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/videos" labels_path = "/path/to/openlabel-labels.json" # labels_path = "/path/to/openlabel-labels" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.OpenLABELVideoDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/videos
LABELS_PATH=/path/to/openlabel-labels.json
# LABELS_PATH=/path/to/openlabel-labels
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.OpenLABELVideoDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
OpenLABEL is a flexible format that allows for many user-specific decisions about how to represent labels and metadata. If you have OpenLABEL-compliant data in a format not understood by the current importers, please make an issue or contribute a pull request!
FiftyOneImageLabelsDataset¶
The fiftyone.types.FiftyOneImageLabelsDataset
type represents a
labeled dataset consisting of images and their associated multitask predictions
stored in
ETA ImageLabels format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.json
<uuid2>.json
...
manifest.json
where manifest.json
is a JSON file in the following format:
{
"type": "eta.core.datasets.LabeledImageDataset",
"description": "",
"index": [
{
"data": "data/<uuid1>.<ext>",
"labels": "labels/<uuid1>.json"
},
{
"data": "data/<uuid2>.<ext>",
"labels": "labels/<uuid2>.json"
},
...
]
}
and where each labels JSON file is stored in ETA ImageLabels format.
For unlabeled images, an empty eta.core.image.ImageLabels
file is stored.
Note
See FiftyOneImageLabelsDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from an image labels dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/image-labels-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneImageLabelsDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/image-labels-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageLabelsDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view an image labels dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/image-labels-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneImageLabelsDataset
FiftyOneVideoLabelsDataset¶
The fiftyone.types.FiftyOneVideoLabelsDataset
type represents a
labeled dataset consisting of videos and their associated labels stored in
ETA VideoLabels format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<uuid1>.<ext>
<uuid2>.<ext>
...
labels/
<uuid1>.json
<uuid2>.json
...
manifest.json
where manifest.json
is a JSON file in the following format:
{
"type": "eta.core.datasets.LabeledVideoDataset",
"description": "",
"index": [
{
"data": "data/<uuid1>.<ext>",
"labels": "labels/<uuid1>.json"
},
{
"data": "data/<uuid2>.<ext>",
"labels": "labels/<uuid2>.json"
},
...
]
}
and where each labels JSON file is stored in ETA VideoLabels format.
For unlabeled videos, an empty eta.core.video.VideoLabels
file is written.
Note
See FiftyOneVideoLabelsDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a video labels dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/video-labels-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneVideoLabelsDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/video-labels-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneVideoLabelsDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a video labels dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/video-labels-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneVideoLabelsDataset
BDDDataset¶
The fiftyone.types.BDDDataset
type represents a labeled dataset
consisting of images and their associated multitask predictions saved in
Berkeley DeepDrive (BDD) format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<filename0>.<ext>
<filename1>.<ext>
...
labels.json
where labels.json
is a JSON file in the following format:
[
{
"name": "<filename0>.<ext>",
"attributes": {
"scene": "city street",
"timeofday": "daytime",
"weather": "overcast"
},
"labels": [
{
"id": 0,
"category": "traffic sign",
"manualAttributes": true,
"manualShape": true,
"attributes": {
"occluded": false,
"trafficLightColor": "none",
"truncated": false
},
"box2d": {
"x1": 1000.698742,
"x2": 1040.626872,
"y1": 281.992415,
"y2": 326.91156
},
"score": 0.95
},
...
{
"id": 34,
"category": "drivable area",
"manualAttributes": true,
"manualShape": true,
"attributes": {
"areaType": "direct"
},
"poly2d": [
{
"types": "LLLLCCC",
"closed": true,
"vertices": [
[241.143645, 697.923453],
[541.525255, 380.564983],
...
]
}
],
"score": 0.87
},
...
{
"id": 109356,
"category": "lane",
"attributes": {
"laneDirection": "parallel",
"laneStyle": "dashed",
"laneType": "single white"
},
"manualShape": true,
"manualAttributes": true,
"poly2d": [
{
"types": "LL",
"closed": false,
"vertices": [
[492.879546, 331.939543],
[0, 471.076658],
...
]
}
],
"score": 0.98
},
...
}
}
...
]
Unlabeled images have no corresponding entry in labels.json
.
The name
attribute of the labels file encodes the location of the
corresponding images, which can be any of the following:
The filename of an image in the
data/
folderA relative path like
data/sub/folder/filename.ext
specifying the relative path to the image in a nested subfolder ofdata/
An absolute path to an image, which may or may not be in the
data/
folder
Note
See BDDDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a BDD dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/bdd-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.BDDDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/bdd-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.BDDDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a BDD dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/bdd-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.BDDDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/bdd-labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.BDDDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/bdd-labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.BDDDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the name
key of your labels contains absolute paths to the source
media, then you can omit the data_path
parameter from the example above.
CSVDataset¶
The fiftyone.types.CSVDataset
type represents a dataset consisting
of images or videos and their associated field values stored as columns of a
CSV file.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<filename1>.<ext>
<filename2>.<ext>
...
labels.csv
where labels.csv
is a CSV file in the following format:
field1,field2,field3,...
value1,value2,value3,...
value1,value2,value3,...
...
One sample will be generated per row in the CSV file (excluding the header row).
One column of the CSV file must contain media paths, which may be either:
filenames or relative paths to media files in
data/
absolute paths to media files
By default it is assumed that a filepath
column exists and contains the
media paths, but you can customize this via the optional media_field
parameter.
By default all columns are loaded as string fields, but you can provide the
optional fields
parameter to select a subset of columns to load or provide
custom parsing functions for each field, as demonstrated below.
Note
See CSVDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a CSV dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/csv-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.CSVDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/csv-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CSVDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a CSV dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/csv-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.CSVDataset
If your CSV file contains absolute media paths, then you can directly specify
the path to the CSV file itself by providing the labels_path
parameter.
Additionally, you can use the fields
parameter to customize how each field is
parsed, as demonstrated below:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo name = "my-dataset" labels_path = "/path/to/labels.csv" fields = { "filepath": None, # load as strings "tags": lambda v: v.strip("").split(","), "float_field": lambda v: float(v), "weather": lambda v: fo.Classification(label=v) if v else None, } # Import CSV file with absolute media paths and custom field parsers dataset = fo.Dataset.from_dir( dataset_type=fo.types.CSVDataset, labels_path=labels_path, fields=fields, name=name, ) |
NAME=my-dataset
LABELS_PATH=/path/to/labels.csv
# Import CSV file with absolute media paths
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.CSVDataset \
--kwargs labels_path=$LABELS_PATH
DICOMDataset¶
The fiftyone.types.DICOMDataset
type represents a dataset consisting
of images and their associated properties stored in
DICOM format.
Note
You must have pydicom installed in order to load DICOM datasets.
The standard format for datasets of this type is the following:
<dataset_dir>/
<filename1>.dcm
<filename2>.dcm
where each .dcm
file is a DICOM file that can be read via
pydicom.dcmread
.
Alternatively, rather than providing a dataset_dir
, you can provide the
dicom_path
argument, which can directly specify a glob pattern of DICOM
files or the path to a
DICOMDIR
file.
By default, all attributes in the DICOM files discoverable via
pydicom.dataset.Dataset.dir()
with supported types are loaded
into sample-level fields, but you can select only specific attributes by
passing the optional keywords
argument.
Note
When importing DICOM datasets, the pixel data are converted to 8-bit
images, using the SmallestImagePixelValue
and
LargestImagePixelValue
attributes (if present), to inform the
conversion.
The images are written to a backing directory that you can configure by
passing the images_dir
argument. By default, the images are written to
dataset_dir
.
Currently, only single frame images are supported, but a community contribution to support 3D or 4D image types (e.g., CT scans) is welcomed!
Note
See DICOMDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a DICOM dataset stored in standard format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/dicom-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.DICOMDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/dicom-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.DICOMDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
You can create a FiftyOne dataset from a glob pattern of DICOM files or the path to a DICOMDIR file as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import fiftyone as fo name = "my-dataset" dicom_path = "/path/to/*.dcm" # glob pattern of DICOM files # dicom_path = "/path/to/DICOMDIR" # DICOMDIR file # Create the dataset dataset = fo.Dataset.from_dir( dicom_path=dicom_path, dataset_type=fo.types.DICOMDataset, keywords=["PatientName", "StudyID"], # load specific attributes name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DICOM_PATH='/path/to/*.dcm' # glob pattern of DICOM files
# DICOM_PATH='/path/to/DICOMDIR' # DICOMDIR file
# Create the dataset
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.DICOMDataset \
--kwargs \
dicom_path=$DICOM_PATH \
keywords=PatientName,StudyID # load specific attributes
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
GeoJSONDataset¶
The fiftyone.types.GeoJSONDataset
type represents a dataset consisting
of images or videos and their associated geolocation data and optional
properties stored in GeoJSON format.
Datasets of this type are read in the following format:
<dataset_dir>/
data/
<filename1>.<ext>
<filename2>.<ext>
...
labels.json
where labels.json
is a GeoJSON file containing a FeatureCollection
in the
following format:
{
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [
-73.99496451958454,
40.66338032487842
]
},
"properties": {
"filename": <filename1>.<ext>,
...
}
},
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [
-73.80992143421788,
40.65611832778962
]
},
"properties": {
"filename": <filename2>.<ext>,
...
}
},
...
]
}
where the geometry
field may contain any valid GeoJSON geometry object, and
the filename
property encodes the name of the corresponding media in the
data/
folder. The filename
property can also be an absolute path, which
may or may not be in the data/
folder.
Samples with no location data will have a null geometry
field.
The properties
field of each feature can contain additional labels that
can be imported.
Note
See GeoJSONDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a GeoJSON dataset stored in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/geojson-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.GeoJSONDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/geojson-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.GeoJSONDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a GeoJSON dataset stored in the above format in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/geojson-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.GeoJSONDataset
You can also independently specify the locations of the labels and the root
directory containing the corresponding media files by providing the
labels_path
and data_path
parameters rather than dataset_dir
:
1 2 3 4 5 6 7 8 9 10 11 12 13 | import fiftyone as fo name = "my-dataset" data_path = "/path/to/images" labels_path = "/path/to/geo-labels.json" # Import dataset by explicitly providing paths to the source media and labels dataset = fo.Dataset.from_dir( dataset_type=fo.types.GeoJSONDataset, data_path=data_path, labels_path=labels_path, name=name, ) |
NAME=my-dataset
DATA_PATH=/path/to/images
LABELS_PATH=/path/to/geo-labels.json
# Import dataset by explicitly providing paths to the source media and labels
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.GeoJSONDataset \
--kwargs \
data_path=$DATA_PATH \
labels_path=$LABELS_PATH
Note
If the filename
key of your labels contains absolute paths to the source
media, then you can omit the data_path
parameter from the example above.
GeoTIFFDataset¶
The fiftyone.types.GeoTIFFDataset
type represents a dataset consisting
of images and their associated geolocation data stored in
GeoTIFF format.
Note
You must have rasterio installed in order to load GeoTIFF datasets.
The standard format for datasets of this type is the following:
<dataset_dir>/
<filename1>.tif
<filename2>.tif
where each .tif
file is a GeoTIFF image that can be read via
rasterio.open
.
Alternatively, rather than providing a dataset_dir
, you can provide the
image_path
argument, which can directly specify a list or glob pattern of
GeoTIFF images to load.
The dataset will contain a GeoLocation
field whose
point
attribute contains the
(longitude, latitude)
coordinates of each image center and whose
polygon
attribute contains
the (longitude, latitude)
coordinates of the corners of the image (clockwise,
starting from the top-left corner).
Note
See GeoTIFFDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a GeoTIFF dataset stored in standard format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/geotiff-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.GeoTIFFDataset, label_field="location", name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/geotiff-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.GeoTIFFDataset \
--kwargs label_field=location
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
You can create a FiftyOne dataset from a list or glob pattern of GeoTIFF images as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | import fiftyone as fo name = "my-dataset" image_path = "/path/to/*.tif" # glob pattern of GeoTIFF images # image_path = ["/path/to/image1.tif", ...] # list of GeoTIFF images # Create the dataset dataset = fo.Dataset.from_dir( image_path=image_path, dataset_type=fo.types.GeoTIFFDataset, label_field="location", name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
IMAGE_PATH='/path/to/*.tif' # glob pattern of GeoTIFF images
# IMAGE_PATH='/path/to/image1.tif,...' # list of GeoTIFF images
# Create the dataset
fiftyone datasets create \
--name $NAME \
--type fiftyone.types.GeoTIFFDataset \
--kwargs \
image_path=$IMAGE_PATH \
label_field=location
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
FiftyOneDataset¶
The fiftyone.types.FiftyOneDataset
provides a disk representation of
an entire Dataset
in a serialized JSON format along with its source media.
Datasets of this type are read in the following format:
<dataset_dir>/
metadata.json
samples.json
data/
<filename1>.<ext>
<filename2>.<ext>
...
annotations/
<anno_key1>.json
<anno_key2>.json
...
brain/
<brain_key1>.json
<brain_key2>.json
...
evaluations/
<eval_key1>.json
<eval_key2>.json
...
where metadata.json
is a JSON file containing metadata associated with the
dataset, samples.json
is a JSON file containing a serialized representation
of the samples in the dataset, annotations/
contains any serialized
AnnotationResults
, brain/
contains any serialized BrainResults
, and
evaluations/
contains any serialized EvaluationResults
.
The contents of the data/
directory may also be organized in nested
subfolders, depending on how the dataset was exported, in which case the
filepaths in samples.json
should contain corerspondingly nested paths.
Video datasets have an additional frames.json
file that contains a serialized
representation of the frame labels for each video in the dataset.
Note
See FiftyOneDatasetImporter
for parameters that can be passed to methods like
Dataset.from_dir()
to
customize the import of datasets of this type.
You can create a FiftyOne dataset from a directory in the above format as follows:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/fiftyone-dataset" # Create the dataset dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneDataset, name=name, ) # View summary info about the dataset print(dataset) # Print the first few samples in the dataset print(dataset.head()) |
NAME=my-dataset
DATASET_DIR=/path/to/fiftyone-dataset
# Create the dataset
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneDataset
# View summary info about the dataset
fiftyone datasets info $NAME
# Print the first few samples in the dataset
fiftyone datasets head $NAME
To view a dataset stored on disk in the FiftyOne App without creating a persistent FiftyOne dataset, you can execute:
DATASET_DIR=/path/to/fiftyone-dataset
# View the dataset in the App
fiftyone app view \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneDataset
If you performed a FiftyOneDataset export
using the rel_dir
parameter to strip a common prefix from the media filepaths
in the dataset, then simply include the rel_dir
parameter when importing back
into FiftyOne to prepend the appropriate prefix to each media path:
1 2 3 4 5 6 7 8 9 10 11 12 | import fiftyone as fo name = "my-dataset" dataset_dir = "/path/to/fiftyone-dataset" # Import dataset, prepending `rel_dir` to each media path dataset = fo.Dataset.from_dir( dataset_dir=dataset_dir, dataset_type=fo.types.FiftyOneDataset, rel_dir="/common/images/dir", name=name, ) |
NAME=my-dataset
DATASET_DIR=/path/to/fiftyone-dataset
# Import dataset, prepending `rel_dir` to each media path
fiftyone datasets create \
--name $NAME \
--dataset-dir $DATASET_DIR \
--type fiftyone.types.FiftyOneDataset \
--kwargs rel_dir=/common/images/dir
Note
Exporting in FiftyOneDataset format using
the export_media=False
and rel_dir
parameters is a convenient way to
transfer datasets between work environments, since this enables you to
store the media files wherever you wish in each environment and then simply
provide the appropriate rel_dir
value as shown above when importing the
dataset into FiftyOne in a new environment.
Custom formats¶
If your data does not follow one of the previous formats, then the simplest and
most flexible approach to loading your data into FiftyOne is to iterate over
your data in a Python loop and add it to a Dataset
.
Alternatively, the Dataset
class provides a
Dataset.from_importer()
factory method that can be used to import a dataset using any DatasetImporter
instance.
This means that you can define your own DatasetImporter
class and then import
a dataset from disk in your custom format using the following recipe:
1 2 3 4 5 6 7 | import fiftyone as fo # Create an instance of your custom dataset importer importer = CustomDatasetImporter(...) # Import the dataset dataset = fo.Dataset.from_importer(importer) |
You can also define a custom Dataset
type, which enables you to import
datasets in your custom format using the
Dataset.from_dir()
factory
method:
1 2 3 4 5 6 7 | import fiftyone as fo # The `fiftyone.types.Dataset` subclass for your custom dataset dataset_type = CustomDataset # Import the dataset dataset = fo.Dataset.from_dir(dataset_type=dataset_type, ...) |
Writing a custom DatasetImporter¶
DatasetImporter
is an abstract interface; the concrete interface that you
should implement is determined by the type of dataset that you are importing.
To define a custom importer for unlabeled image datasets, implement the
UnlabeledImageDatasetImporter
interface.
The pseudocode below provides a template for a custom
UnlabeledImageDatasetImporter
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | import fiftyone.utils.data as foud class CustomUnlabeledImageDatasetImporter(foud.UnlabeledImageDatasetImporter): """Custom importer for unlabeled image datasets. Args: dataset_dir (None): the dataset directory. This may be optional for some importers shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported **kwargs: additional keyword arguments for your importer """ def __init__( self, dataset_dir=None, shuffle=False, seed=None, max_samples=None, **kwargs, ): super().__init__( dataset_dir=dataset_dir, shuffle=shuffle, seed=seed, max_samples=max_samples ) # Your initialization here def __len__(self): """The total number of samples that will be imported. Raises: TypeError: if the total number is not known """ # Return the total number of samples in the dataset (if known) pass def __next__(self): """Returns information about the next sample in the dataset. Returns: an ``(image_path, image_metadata)`` tuple, where: - ``image_path`` is the path to the image on disk - ``image_metadata`` is an :class:`fiftyone.core.metadata.ImageMetadata` instances for the image, or ``None`` if :meth:`has_image_metadata` is ``False`` Raises: StopIteration: if there are no more samples to import """ # Implement loading the next sample in your dataset here pass @property def has_dataset_info(self): """Whether this importer produces a dataset info dictionary.""" # Return True or False here pass @property def has_image_metadata(self): """Whether this importer produces :class:`fiftyone.core.metadata.ImageMetadata` instances for each image. """ # Return True or False here pass def setup(self): """Performs any necessary setup before importing the first sample in the dataset. This method is called when the importer's context manager interface is entered, :func:`DatasetImporter.__enter__`. """ # Your custom setup here pass def get_dataset_info(self): """Returns the dataset info for the dataset. By convention, this method should be called after all samples in the dataset have been imported. Returns: a dict of dataset info """ # Return a dict of dataset info, if supported by your importer pass def close(self, *args): """Performs any necessary actions after the last sample has been imported. This method is called when the importer's context manager interface is exited, :func:`DatasetImporter.__exit__`. Args: *args: the arguments to :func:`DatasetImporter.__exit__` """ # Your custom code here to complete the import pass |
When Dataset.from_dir()
is
called with a custom UnlabeledImageDatasetImporter
, the import is effectively
performed via the pseudocode below:
import fiftyone as fo
dataset = fo.Dataset(...)
importer = CustomUnlabeledImageDatasetImporter(...)
with importer:
for image_path, image_metadata in importer:
dataset.add_sample(
fo.Sample(filepath=image_path, metadata=image_metadata)
)
if importer.has_dataset_info:
info = importer.get_dataset_info()
parse_info(dataset, info)
Note that the importer is invoked via its context manager interface, which
automatically calls the
setup()
and
close()
methods of the importer to handle setup/completion of the import.
The images in the dataset are iteratively loaded by invoking the
__next__()
method of the importer.
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve
dataset-level information to store on the FiftyOne dataset. See
this section for more information.
The
has_image_metadata
property of the importer allows it to declare whether it returns
ImageMetadata
instances for each image that it loads when
__next__()
is called.
To define a custom importer for labeled image datasets, implement the
LabeledImageDatasetImporter
interface.
The pseudocode below provides a template for a custom
LabeledImageDatasetImporter
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | import fiftyone.utils.data as foud class CustomLabeledImageDatasetImporter(foud.LabeledImageDatasetImporter): """Custom importer for labeled image datasets. Args: dataset_dir (None): the dataset directory. This may be optional for some importers shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported **kwargs: additional keyword arguments for your importer """ def __init__( self, dataset_dir=None, shuffle=False, seed=None, max_samples=None, **kwargs, ): super().__init__( dataset_dir=dataset_dir, shuffle=shuffle, seed=seed, max_samples=max_samples, ) # Your initialization here def __len__(self): """The total number of samples that will be imported. Raises: TypeError: if the total number is not known """ # Return the total number of samples in the dataset (if known) pass def __next__(self): """Returns information about the next sample in the dataset. Returns: an ``(image_path, image_metadata, label)`` tuple, where - ``image_path``: the path to the image on disk - ``image_metadata``: an :class:`fiftyone.core.metadata.ImageMetadata` instances for the image, or ``None`` if :meth:`has_image_metadata` is ``False`` - ``label``: an instance of :meth:`label_cls`, or a dictionary mapping field names to :class:`fiftyone.core.labels.Label` instances, or ``None`` if the sample is unlabeled Raises: StopIteration: if there are no more samples to import """ # Implement loading the next sample in your dataset here pass @property def has_dataset_info(self): """Whether this importer produces a dataset info dictionary.""" # Return True or False here pass @property def has_image_metadata(self): """Whether this importer produces :class:`fiftyone.core.metadata.ImageMetadata` instances for each image. """ # Return True or False here pass @property def label_cls(self): """The :class:`fiftyone.core.labels.Label` class(es) returned by this importer. This can be any of the following: - a :class:`fiftyone.core.labels.Label` class. In this case, the importer is guaranteed to return labels of this type - a list or tuple of :class:`fiftyone.core.labels.Label` classes. In this case, the importer can produce a single label field of any of these types - a dict mapping keys to :class:`fiftyone.core.labels.Label` classes. In this case, the importer will return label dictionaries with keys and value-types specified by this dictionary. Not all keys need be present in the imported labels - ``None``. In this case, the importer makes no guarantees about the labels that it may return """ # Return the appropriate value here pass def setup(self): """Performs any necessary setup before importing the first sample in the dataset. This method is called when the importer's context manager interface is entered, :func:`DatasetImporter.__enter__`. """ # Your custom setup here pass def get_dataset_info(self): """Returns the dataset info for the dataset. By convention, this method should be called after all samples in the dataset have been imported. Returns: a dict of dataset info """ # Return a dict of dataset info, if supported by your importer pass def close(self, *args): """Performs any necessary actions after the last sample has been imported. This method is called when the importer's context manager interface is exited, :func:`DatasetImporter.__exit__`. Args: *args: the arguments to :func:`DatasetImporter.__exit__` """ # Your custom code here to complete the import pass |
When Dataset.from_dir()
is
called with a custom LabeledImageDatasetImporter
, the import is effectively
performed via the pseudocode below:
import fiftyone as fo
dataset = fo.Dataset(...)
importer = CustomLabeledImageDatasetImporter(...)
label_field = ...
if isinstance(label_field, dict):
label_key = lambda k: label_field.get(k, k)
elif label_field is not None:
label_key = lambda k: label_field + "_" + k
else:
label_field = "ground_truth"
label_key = lambda k: k
with importer:
for image_path, image_metadata, label in importer:
sample = fo.Sample(filepath=image_path, metadata=image_metadata)
if isinstance(label, dict):
sample.update_fields({label_key(k): v for k, v in label.items()})
elif label is not None:
sample[label_field] = label
dataset.add_sample(sample)
if importer.has_dataset_info:
info = importer.get_dataset_info()
parse_info(dataset, info)
Note that the importer is invoked via its context manager interface, which
automatically calls the
setup()
and
close()
methods of the importer to handle setup/completion of the import.
The images and their corresponding Label
instances in the dataset are
iteratively loaded by invoking the
__next__()
method of the importer.
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve
dataset-level information to store on the FiftyOne dataset. See
this section for more information.
The
label_cls
property of the importer declares the type of label(s) that the importer
will produce.
The
has_image_metadata
property of the importer allows it to declare whether it returns
ImageMetadata
instances for each image that it loads when
__next__()
is called.
To define a custom importer for unlabeled video datasets, implement the
UnlabeledVideoDatasetImporter
interface.
The pseudocode below provides a template for a custom
UnlabeledVideoDatasetImporter
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | import fiftyone.utils.data as foud class CustomUnlabeledVideoDatasetImporter(foud.UnlabeledVideoDatasetImporter): """Custom importer for unlabeled video datasets. Args: dataset_dir (None): the dataset directory. This may be optional for some importers shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported **kwargs: additional keyword arguments for your importer """ def __init__( self, dataset_dir=None, shuffle=False, seed=None, max_samples=None, **kwargs, ): super().__init__( dataset_dir=dataset_dir, shuffle=shuffle, seed=seed, max_samples=max_samples, ) # Your initialization here def __len__(self): """The total number of samples that will be imported. Raises: TypeError: if the total number is not known """ # Return the total number of samples in the dataset (if known) pass def __next__(self): """Returns information about the next sample in the dataset. Returns: an ``(video_path, video_metadata)`` tuple, where: - ``video_path`` is the path to the video on disk - ``video_metadata`` is an :class:`fiftyone.core.metadata.VideoMetadata` instances for the video, or ``None`` if :meth:`has_video_metadata` is ``False`` Raises: StopIteration: if there are no more samples to import """ # Implement loading the next sample in your dataset here pass @property def has_dataset_info(self): """Whether this importer produces a dataset info dictionary.""" # Return True or False here pass @property def has_video_metadata(self): """Whether this importer produces :class:`fiftyone.core.metadata.VideoMetadata` instances for each video. """ # Return True or False here pass def setup(self): """Performs any necessary setup before importing the first sample in the dataset. This method is called when the importer's context manager interface is entered, :func:`DatasetImporter.__enter__`. """ # Your custom setup here pass def get_dataset_info(self): """Returns the dataset info for the dataset. By convention, this method should be called after all samples in the dataset have been imported. Returns: a dict of dataset info """ # Return a dict of dataset info, if supported by your importer pass def close(self, *args): """Performs any necessary actions after the last sample has been imported. This method is called when the importer's context manager interface is exited, :func:`DatasetImporter.__exit__`. Args: *args: the arguments to :func:`DatasetImporter.__exit__` """ # Your custom code here to complete the import pass |
When Dataset.from_dir()
is
called with a custom UnlabeledVideoDatasetImporter
, the import is effectively
performed via the pseudocode below:
import fiftyone as fo
dataset = fo.Dataset(...)
importer = CustomUnlabeledVideoDatasetImporter(...)
with importer:
for video_path, video_metadata in importer:
dataset.add_sample(
fo.Sample(filepath=video_path, metadata=video_metadata)
)
if importer.has_dataset_info:
info = importer.get_dataset_info()
parse_info(dataset, info)
Note that the importer is invoked via its context manager interface, which
automatically calls the
setup()
and
close()
methods of the importer to handle setup/completion of the import.
The videos in the dataset are iteratively loaded by invoking the
__next__()
method of the importer.
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve
dataset-level information to store on the FiftyOne dataset. See
this section for more information.
The
has_video_metadata
property of the importer allows it to declare whether it returns
VideoMetadata
instances for each video that it loads when
__next__()
is called.
To define a custom importer for labeled video datasets, implement the
LabeledVideoDatasetImporter
interface.
The pseudocode below provides a template for a custom
LabeledVideoDatasetImporter
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | import fiftyone.utils.data as foud class CustomLabeledVideoDatasetImporter(foud.LabeledVideoDatasetImporter): """Custom importer for labeled video datasets. Args: dataset_dir (None): the dataset directory. This may be optional for some importers shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported **kwargs: additional keyword arguments for your importer """ def __init__( self, dataset_dir=None, shuffle=False, seed=None, max_samples=None, **kwargs, ): super().__init__( dataset_dir=dataset_dir, shuffle=shuffle, seed=seed, max_samples=max_samples, ) # Your initialization here def __len__(self): """The total number of samples that will be imported. Raises: TypeError: if the total number is not known """ # Return the total number of samples in the dataset (if known) pass def __next__(self): """Returns information about the next sample in the dataset. Returns: an ``(video_path, video_metadata, labels, frames)`` tuple, where - ``video_path``: the path to the video on disk - ``video_metadata``: an :class:`fiftyone.core.metadata.VideoMetadata` instances for the video, or ``None`` if :meth:`has_video_metadata` is ``False`` - ``labels``: sample-level labels for the video, which can be any of the following:: - a :class:`fiftyone.core.labels.Label` instance - a dictionary mapping label fields to :class:`fiftyone.core.labels.Label` instances - ``None`` if the sample has no sample-level labels - ``frames``: frame-level labels for the video, which can be any of the following:: - a dictionary mapping frame numbers to dictionaries that map label fields to :class:`fiftyone.core.labels.Label` instances for each video frame - ``None`` if the sample has no frame-level labels Raises: StopIteration: if there are no more samples to import """ # Implement loading the next sample in your dataset here pass @property def has_dataset_info(self): """Whether this importer produces a dataset info dictionary.""" # Return True or False here pass @property def has_video_metadata(self): """Whether this importer produces :class:`fiftyone.core.metadata.VideoMetadata` instances for each video. """ # Return True or False here pass @property def label_cls(self): """The :class:`fiftyone.core.labels.Label` class(es) returned by this importer within the sample-level labels that it produces. This can be any of the following: - a :class:`fiftyone.core.labels.Label` class. In this case, the importer is guaranteed to return sample-level labels of this type - a list or tuple of :class:`fiftyone.core.labels.Label` classes. In this case, the importer can produce a single sample-level label field of any of these types - a dict mapping keys to :class:`fiftyone.core.labels.Label` classes. In this case, the importer will return sample-level label dictionaries with keys and value-types specified by this dictionary. Not all keys need be present in the imported labels - ``None``. In this case, the importer makes no guarantees about the sample-level labels that it may return """ # Return the appropriate value here pass @property def frame_label_cls(self): """The :class:`fiftyone.core.labels.Label` class(es) returned by this importer within the frame labels that it produces. This can be any of the following: - a :class:`fiftyone.core.labels.Label` class. In this case, the importer is guaranteed to return frame labels of this type - a list or tuple of :class:`fiftyone.core.labels.Label` classes. In this case, the importer can produce a single frame label field of any of these types - a dict mapping keys to :class:`fiftyone.core.labels.Label` classes. In this case, the importer will return frame label dictionaries with keys and value-types specified by this dictionary. Not all keys need be present in each frame - ``None``. In this case, the importer makes no guarantees about the frame labels that it may return """ # Return the appropriate value here pass def setup(self): """Performs any necessary setup before importing the first sample in the dataset. This method is called when the importer's context manager interface is entered, :func:`DatasetImporter.__enter__`. """ # Your custom setup here pass def get_dataset_info(self): """Returns the dataset info for the dataset. By convention, this method should be called after all samples in the dataset have been imported. Returns: a dict of dataset info """ # Return a dict of dataset info, if supported by your importer pass def close(self, *args): """Performs any necessary actions after the last sample has been imported. This method is called when the importer's context manager interface is exited, :func:`DatasetImporter.__exit__`. Args: *args: the arguments to :func:`DatasetImporter.__exit__` """ # Your custom code here to complete the import pass |
When Dataset.from_dir()
is
called with a custom LabeledVideoDatasetImporter
, the import is effectively
performed via the pseudocode below:
import fiftyone as fo
dataset = fo.Dataset(...)
importer = CustomLabeledVideoDatasetImporter(...)
label_field = ...
if isinstance(label_field, dict):
label_key = lambda k: label_field.get(k, k)
elif label_field is not None:
label_key = lambda k: label_field + "_" + k
else:
label_field = "ground_truth"
label_key = lambda k: k
with importer:
for video_path, video_metadata, label, frames in importer:
sample = fo.Sample(filepath=video_path, metadata=video_metadata)
if isinstance(label, dict):
sample.update_fields({label_key(k): v for k, v in label.items()})
elif label is not None:
sample[label_field] = label
if frames is not None:
frame_labels = {}
for frame_number, _label in frames.items():
if isinstance(_label, dict):
frame_labels[frame_number] = {
label_key(k): v for k, v in _label.items()
}
elif _label is not None:
frame_labels[frame_number] = {label_field: _label}
sample.frames.merge(frame_labels)
dataset.add_sample(sample)
if importer.has_dataset_info:
info = importer.get_dataset_info()
parse_info(dataset, info)
Note that the importer is invoked via its context manager interface, which
automatically calls the
setup()
and
close()
methods of the importer to handle setup/completion of the import.
The videos and their corresponding labels in the dataset are iteratively
loaded by invoking the
__next__()
method of the importer. In particular, sample-level labels for the video
may be returned in a label
value (which may contain a single Label
value or a dictionary that maps field names to labels), and frame-level
labels may be returned in a frames
dictionary that maps frame numbers
to dictionaries of field names and labels.
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve
dataset-level information to store on the FiftyOne dataset. See
this section for more information.
The
label_cls
property of the importer declares the type of sample-level label(s) that
the importer will produce (if any), and the
frame_labels_cls
property of the importer declares the type of frame-level label(s) that the
importer will produce (if any).
The
has_video_metadata
property of the importer allows it to declare whether it returns
VideoMetadata
instances for each video that it loads when
__next__()
is called.
To define a custom importer for grouped datasets, implement the
GroupDatasetImporter
interface.
The pseudocode below provides a template for a custom
GroupDatasetImporter
:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | import fiftyone.utils.data as foud class CustomGroupDatasetImporter(foud.GroupDatasetImporter): """Custom importer for grouped datasets. Args: dataset_dir (None): the dataset directory. This may be optional for some importers shuffle (False): whether to randomly shuffle the order in which the samples are imported seed (None): a random seed to use when shuffling max_samples (None): a maximum number of samples to import. By default, all samples are imported **kwargs: additional keyword arguments for your importer """ def __init__( self, dataset_dir=None, shuffle=False, seed=None, max_samples=None, **kwargs, ): super().__init__( dataset_dir=dataset_dir, shuffle=shuffle, seed=seed, max_samples=max_samples ) # Your initialization here def __len__(self): """The total number of samples that will be imported across all group slices. Raises: TypeError: if the total number is not known """ # Return the total number of samples in the dataset (if known) pass def __next__(self): """Returns information about the next group in the dataset. Returns: a dict mapping slice names to :class:`fiftyone.core.sample.Sample` instances Raises: StopIteration: if there are no more groups to import """ # Implement loading the next group in your dataset here pass @property def has_dataset_info(self): """Whether this importer produces a dataset info dictionary.""" # Return True or False here pass @property def has_sample_field_schema(self): """Whether this importer produces a sample field schema.""" # Return True or False here pass @property def group_field(self): """The name of the group field to populate on each sample.""" # This is the default, but you can customize if desired return "group" def setup(self): """Performs any necessary setup before importing the first sample in the dataset. This method is called when the importer's context manager interface is entered, :func:`DatasetImporter.__enter__`. """ # Your custom setup here pass def get_dataset_info(self): """Returns the dataset info for the dataset. By convention, this method should be called after all samples in the dataset have been imported. Returns: a dict of dataset info """ # Return a dict of dataset info, if supported by your importer pass def get_sample_field_schema(self): """Returns a dictionary describing the field schema of the samples loaded by this importer. The returned dictionary should map field names to to string representations of :class:`fiftyone.core.fields.Field` instances generated by ``str(field)``. Returns: a dict """ # Return the sample schema here, if known pass def close(self, *args): """Performs any necessary actions after the last sample has been imported. This method is called when the importer's context manager interface is exited, :func:`DatasetImporter.__exit__`. Args: *args: the arguments to :func:`DatasetImporter.__exit__` """ # Your custom code here to complete the import pass |
When Dataset.from_dir()
is
called with a custom GroupDatasetImporter
, the import is effectively
performed via the pseudocode below:
import fiftyone as fo
dataset = fo.Dataset(...)
importer = CustomGroupDatasetImporter(...)
group_field = importer.group_field
with importer:
for group in importer:
_group = fo.Group()
for name, sample in group.items():
sample[group_field] = _group.element(name)
dataset.add_sample(sample)
if importer.has_dataset_info:
info = importer.get_dataset_info()
parse_info(dataset, info)
Note that the importer is invoked via its context manager interface, which
automatically calls the
setup()
and
close()
methods of the importer to handle setup/completion of the import.
The groups in the dataset are iteratively loaded by invoking the
__next__()
method of the importer.
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve
dataset-level information to store on the FiftyOne dataset. See
this section for more information.
The
group_field
property of the importer allows it to declare the name of the field in
which to store the Group
information for each sample.
Importing dataset-level information¶
The
has_dataset_info
property of the importer allows it to declare whether its
get_dataset_info()
method should be called after all samples have been imported to retrieve a dict
of dataset-level information to store in the
info
property of the dataset.
As a special case, if the info
dict contains any of the keys listed below,
these items are popped and stored in the corresponding dedicated dataset field:
"classes"
key:Dataset.classes
"default_classes"
key:Dataset.default_classes
"mask_targets"
key:Dataset.mask_targets
"default_mask_targets"
key:Dataset.default_mask_targets
"skeletons"
key:Dataset.skeletons
"default_skeleton"
key:Dataset.default_skeleton
"app_config"
key:Dataset.app_config
Writing a custom Dataset type¶
FiftyOne provides the Dataset
type system so that dataset formats can be
conveniently referenced by their type when reading/writing datasets on disk.
The primary function of the Dataset
subclasses is to define the
DatasetImporter
that should be used to read instances of the dataset from
disk and the DatasetExporter
that should be used to write instances of the
dataset to disk.
See this page for more information
about defining custom DatasetExporter
classes.
Custom dataset types can be declared by implementing the Dataset
subclass
corresponding to the type of dataset that you are working with.
The pseudocode below provides a template for a custom
UnlabeledImageDataset
subclass:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import fiftyone.types as fot class CustomUnlabeledImageDataset(fot.UnlabeledImageDataset): """Custom unlabeled image dataset type.""" def get_dataset_importer_cls(self): """Returns the :class:`fiftyone.utils.data.importers.UnlabeledImageDatasetImporter` class for importing datasets of this type from disk. Returns: a :class:`fiftyone.utils.data.importers.UnlabeledImageDatasetImporter` class """ # Return your custom UnlabeledImageDatasetImporter class here pass def get_dataset_exporter_cls(self): """Returns the :class:`fiftyone.utils.data.exporters.UnlabeledImageDatasetExporter` class for exporting datasets of this type to disk. Returns: a :class:`fiftyone.utils.data.exporters.UnlabeledImageDatasetExporter` class """ # Return your custom UnlabeledImageDatasetExporter class here pass |
Note that, as this type represents an unlabeled image dataset, its importer
must be a subclass of UnlabeledImageDatasetImporter
, and its exporter
must be a subclass of UnlabeledImageDatasetExporter
.
The pseudocode below provides a template for a custom
LabeledImageDataset
subclass:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import fiftyone.types as fot class CustomLabeledImageDataset(fot.LabeledImageDataset): """Custom labeled image dataset type.""" def get_dataset_importer_cls(self): """Returns the :class:`fiftyone.utils.data.importers.LabeledImageDatasetImporter` class for importing datasets of this type from disk. Returns: a :class:`fiftyone.utils.data.importers.LabeledImageDatasetImporter` class """ # Return your custom LabeledImageDatasetImporter class here pass def get_dataset_exporter_cls(self): """Returns the :class:`fiftyone.utils.data.exporters.LabeledImageDatasetExporter` class for exporting datasets of this type to disk. Returns: a :class:`fiftyone.utils.data.exporters.LabeledImageDatasetExporter` class """ # Return your custom LabeledImageDatasetExporter class here pass |
Note that, as this type represents a labeled image dataset, its importer
must be a subclass of LabeledImageDatasetImporter
, and its exporter must
be a subclass of LabeledImageDatasetExporter
.
The pseudocode below provides a template for a custom
UnlabeledVideoDataset
subclass:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import fiftyone.types as fot class CustomUnlabeledVideoDataset(fot.UnlabeledVideoDataset): """Custom unlabeled video dataset type.""" def get_dataset_importer_cls(self): """Returns the :class:`fiftyone.utils.data.importers.UnlabeledVideoDatasetImporter` class for importing datasets of this type from disk. Returns: a :class:`fiftyone.utils.data.importers.UnlabeledVideoDatasetImporter` class """ # Return your custom UnlabeledVideoDatasetImporter class here pass def get_dataset_exporter_cls(self): """Returns the :class:`fiftyone.utils.data.exporters.UnlabeledVideoDatasetExporter` class for exporting datasets of this type to disk. Returns: a :class:`fiftyone.utils.data.exporters.UnlabeledVideoDatasetExporter` class """ # Return your custom UnlabeledVideoDatasetExporter class here pass |
Note that, as this type represents an unlabeled video dataset, its importer
must be a subclass of UnlabeledVideoDatasetImporter
, and its exporter
must be a subclass of UnlabeledVideoDatasetExporter
.
The pseudocode below provides a template for a custom
LabeledVideoDataset
subclass:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import fiftyone.types as fot class CustomLabeledVideoDataset(fot.LabeledVideoDataset): """Custom labeled video dataset type.""" def get_dataset_importer_cls(self): """Returns the :class:`fiftyone.utils.data.importers.LabeledVideoDatasetImporter` class for importing datasets of this type from disk. Returns: a :class:`fiftyone.utils.data.importers.LabeledVideoDatasetImporter` class """ # Return your custom LabeledVideoDatasetImporter class here pass def get_dataset_exporter_cls(self): """Returns the :class:`fiftyone.utils.data.exporters.LabeledVideoDatasetExporter` class for exporting datasets of this type to disk. Returns: a :class:`fiftyone.utils.data.exporters.LabeledVideoDatasetExporter` class """ # Return your custom LabeledVideoDatasetExporter class here pass |
Note that, as this type represents a labeled video dataset, its importer
must be a subclass of LabeledVideoDatasetImporter
, and its exporter must
be a subclass of LabeledVideoDatasetExporter
.
The pseudocode below provides a template for a custom GroupDataset
subclass:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | import fiftyone.types as fot class CustomGroupDataset(fot.GroupDataset): """Custom grouped dataset type.""" def get_dataset_importer_cls(self): """Returns the :class:`fiftyone.utils.data.importers.GroupDatasetImporter` class for importing datasets of this type from disk. Returns: a :class:`fiftyone.utils.data.importers.GroupDatasetImporter` class """ # Return your custom GroupDatasetImporter class here pass def get_dataset_exporter_cls(self): """Returns the :class:`fiftyone.utils.data.exporters.GroupDatasetExporter` class for exporting datasets of this type to disk. Returns: a :class:`fiftyone.utils.data.exporters.GroupDatasetExporter` class """ # Return your custom GroupDatasetExporter class here pass |
Note that, as this type represents a grouped dataset, its importer must be
a subclass of GroupDatasetImporter
, and its exporter must be a subclass
of GroupDatasetExporter
.