Built-In Zoo Models#

This page lists all of the natively available models in the FiftyOne Model Zoo.

Check out the API reference for complete instructions for using the Model Zoo.


alexnet-imagenet-torch

AlexNet model architecture from "One weird trick for parallelizing convolutional neural networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Alexnet

centernet-hg104-1024-coco-tf2

CenterNet model from "Objects as Points" with the Hourglass-104 backbone trained on COCO resized to 1024x1024

Detection,Coco,TensorFlow-2,Centernet

centernet-hg104-512-coco-tf2

CenterNet model from "Objects as Points" with the Hourglass-104 backbone trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Centernet

centernet-mobilenet-v2-fpn-512-coco-tf2

CenterNet model from "Objects as Points" with the MobileNetV2 backbone trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Centernet,Mobilenet

centernet-resnet101-v1-fpn-512-coco-tf2

CenterNet model from "Objects as Points" with the ResNet-101v1 backbone + FPN trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Centernet,Resnet

centernet-resnet50-v1-fpn-512-coco-tf2

CenterNet model from "Objects as Points" with the ResNet-50-v1 backbone + FPN trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Centernet,Resnet

centernet-resnet50-v2-512-coco-tf2

CenterNet model from "Objects as Points" with the ResNet-50v2 backbone trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Centernet,Resnet

classification-transformer-torch

Hugging Face Transformers model for image classification

Classification,Logits,Embeddings,PyTorch,Transformers

clip-vit-base32-torch

CLIP text/image encoder from "Learning Transferable Visual Models From Natural Language Supervision" trained on 400M text-image pairs

Classification,Logits,Embeddings,PyTorch,Clip,Zero-shot

deeplabv3-cityscapes-tf

DeepLabv3+ semantic segmentation model from "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" with Xception backbone trained on the Cityscapes dataset

Segmentation,Cityscapes,TensorFlow,Deeplabv3

deeplabv3-mnv2-cityscapes-tf

DeepLabv3+ semantic segmentation model from "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" with MobileNetV2 backbone trained on the Cityscapes dataset

Segmentation,Cityscapes,TensorFlow,Deeplabv3

deeplabv3-resnet101-coco-torch

DeepLabV3 model from "Rethinking Atrous Convolution for Semantic Image Segmentation" with ResNet-101 backbone trained on COCO

Segmentation,Coco,PyTorch,Resnet,Deeplabv3

deeplabv3-resnet50-coco-torch

DeepLabV3 model from "Rethinking Atrous Convolution for Semantic Image Segmentation" with ResNet-50 backbone trained on COCO

Segmentation,Coco,PyTorch,Resnet,Deeplabv3

densenet121-imagenet-torch

Densenet-121 model from "Densely Connected Convolutional Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Densenet

densenet161-imagenet-torch

Densenet-161 model from "Densely Connected Convolutional Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Densenet

densenet169-imagenet-torch

Densenet-169 model from "Densely Connected Convolutional Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Densenet

densenet201-imagenet-torch

Densenet-201 model from "Densely Connected Convolutional Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Densenet

depth-estimation-transformer-torch

Hugging Face Transformers model for monocular depth estimation

Depth,PyTorch,Transformers

detection-transformer-torch

Hugging Face Transformers model for object detection

Detection,Logits,Embeddings,PyTorch,Transformers

dinov2-vitb14-reg-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled

Embeddings,PyTorch,Dinov2

dinov2-vitb14-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled

Embeddings,PyTorch,Dinov2

dinov2-vitg14-reg-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14

Embeddings,PyTorch,Dinov2

dinov2-vitg14-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14

Embeddings,PyTorch,Dinov2

dinov2-vitl14-reg-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled

Embeddings,PyTorch,Dinov2

dinov2-vitl14-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled

Embeddings,PyTorch,Dinov2

dinov2-vits14-reg-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled

Embeddings,PyTorch,Dinov2

dinov2-vits14-torch

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled

Embeddings,PyTorch,Dinov2

efficientdet-d0-512-coco-tf2

EfficientDet-D0 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 512x512

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d0-coco-tf1

EfficientDet-D0 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d1-640-coco-tf2

EfficientDet-D1 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 640x640

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d1-coco-tf1

EfficientDet-D1 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d2-768-coco-tf2

EfficientDet-D2 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 768x768

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d2-coco-tf1

EfficientDet-D2 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d3-896-coco-tf2

EfficientDet-D3 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 896x896

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d3-coco-tf1

EfficientDet-D3 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d4-1024-coco-tf2

EfficientDet-D4 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1024x1024

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d4-coco-tf1

EfficientDet-D4 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d5-1280-coco-tf2

EfficientDet-D5 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1280x1280

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d5-coco-tf1

EfficientDet-D5 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d6-1280-coco-tf2

EfficientDet-D6 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1280x1280

Detection,Coco,TensorFlow-2,Efficientdet

efficientdet-d6-coco-tf1

EfficientDet-D6 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO

Detection,Coco,TensorFlow-1,Efficientdet

efficientdet-d7-1536-coco-tf2

EfficientDet-D7 model from "EfficientDet: Scalable and Efficient Object Detection" trained on COCO resized to 1536x1536

Detection,Coco,TensorFlow-2,Efficientdet

faster-rcnn-inception-resnet-atrous-v2-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" atrous version with Inception backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Inception,Resnet

faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" atrous version with low-proposals and Inception backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Inception,Resnet

faster-rcnn-inception-v2-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with Inception v2 backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Inception

faster-rcnn-nas-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with NAS-net backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn

faster-rcnn-nas-lowproposals-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and NAS-net backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn

faster-rcnn-resnet101-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-101 backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Resnet

faster-rcnn-resnet101-lowproposals-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and ResNet-101 backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Resnet

faster-rcnn-resnet50-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-50 backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Resnet

faster-rcnn-resnet50-fpn-coco-torch

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with ResNet-50 FPN backbone trained on COCO

Detection,Coco,PyTorch,Faster-rcnn,Resnet

faster-rcnn-resnet50-lowproposals-coco-tf

Faster R-CNN model from "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" with low-proposals and ResNet-50 backbone trained on COCO

Detection,Coco,TensorFlow,Faster-rcnn,Resnet

fcn-resnet101-coco-torch

FCN model from "Fully Convolutional Networks for Semantic Segmentation" with ResNet-101 backbone trained on COCO

Segmentation,Coco,PyTorch,Fcn,Resnet

fcn-resnet50-coco-torch

FCN model from "Fully Convolutional Networks for Semantic Segmentation" with ResNet-50 backbone trained on COCO

Segmentation,Coco,PyTorch,Fcn,Resnet

googlenet-imagenet-torch

GoogLeNet (Inception v1) model from "Going Deeper with Convolutions" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Googlenet

group-vit-segmentation-transformer-torch

Hugging Face Transformers model for zero-shot semantic segmentation

Segmentation,Embeddings,PyTorch,Transformers,Zero-shot

inception-resnet-v2-imagenet-tf1

Inception v2 model from "Rethinking the Inception Architecture for Computer Vision" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Inception,Resnet

inception-v3-imagenet-torch

Inception v3 model from "Rethinking the Inception Architecture for Computer Vision" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Inception

inception-v4-imagenet-tf1

Inception v4 model from "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Inception

keypoint-rcnn-resnet50-fpn-coco-torch

Keypoint R-CNN model from "Mask R-CNN" with ResNet-50 FPN backbone trained on COCO

Keypoints,Coco,PyTorch,Keypoint-rcnn,Resnet

mask-rcnn-inception-resnet-v2-atrous-coco-tf

Mask R-CNN model from "Mask R-CNN" atrous version with Inception backbone trained on COCO

Instances,Coco,TensorFlow,Mask-rcnn,Inception,Resnet

mask-rcnn-inception-v2-coco-tf

Mask R-CNN model from "Mask R-CNN" with Inception backbone trained on COCO

Instances,Coco,TensorFlow,Mask-rcnn,Inception

mask-rcnn-resnet101-atrous-coco-tf

Mask R-CNN model from "Mask R-CNN" atrous version with ResNet-101 backbone trained on COCO

Instances,Coco,TensorFlow,Mask-rcnn,Resnet

mask-rcnn-resnet50-atrous-coco-tf

Mask R-CNN model from "Mask R-CNN" atrous version with ResNet-50 backbone trained on COCO

Instances,Coco,TensorFlow,Mask-rcnn,Resnet

mask-rcnn-resnet50-fpn-coco-torch

Mask R-CNN model from "Mask R-CNN" with ResNet-50 FPN backbone trained on COCO

Instances,Coco,PyTorch,Mask-rcnn,Resnet

med-sam-2-video-torch

Fine-tuned SAM2-hiera-tiny model from "Medical SAM 2 - Segment Medical Images as Video via Segment Anything Model 2"

Segment-anything,PyTorch,Zero-shot,Video,Med-sam

mnasnet0.5-imagenet-torch

MNASNet model from "MnasNet: Platform-Aware Neural Architecture Search for Mobile" with depth multiplier of 0.5 trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Mnasnet

mnasnet1.0-imagenet-torch

MNASNet model from "MnasNet: Platform-Aware Neural Architecture Search for Mobile" with depth multiplier of 1.0 trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Mnasnet

mobilenet-v2-imagenet-tf1

MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Mobilenet

mobilenet-v2-imagenet-torch

MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Mobilenet

omdet-turbo-swin-tiny-torch

Hugging Face Transformers OmDet-Turbo

Detection,Logits,Embeddings,PyTorch,Transformers,Zero-shot

open-clip-torch

OPEN CLIP text/image encoder from "Learning Transferable Visual Models From Natural Language Supervision" trained on 400M text-image pairs

Classification,Logits,Embeddings,PyTorch,Clip,Zero-shot

owlvit-base-patch16-torch

Hugging Face Transformers OWL-ViT

Detection,Logits,Embeddings,PyTorch,Transformers,Zero-shot

resnet-v1-50-imagenet-tf1

ResNet-50 v1 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Resnet

resnet-v2-50-imagenet-tf1

ResNet-50 v2 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Resnet

resnet101-imagenet-torch

ResNet-101 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnet

resnet152-imagenet-torch

ResNet-152 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnet

resnet18-imagenet-torch

ResNet-18 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnet

resnet34-imagenet-torch

ResNet-34 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnet

resnet50-imagenet-torch

ResNet-50 model from "Deep Residual Learning for Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnet

resnext101-32x8d-imagenet-torch

ResNeXt-101 32x8d model from "Aggregated Residual Transformations for Deep Neural Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnext

resnext50-32x4d-imagenet-torch

ResNeXt-50 32x4d model from "Aggregated Residual Transformations for Deep Neural Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Resnext

retinanet-resnet50-fpn-coco-torch

RetinaNet model from "Focal Loss for Dense Object Detection" with ResNet-50 FPN backbone trained on COCO

Detection,Coco,PyTorch,Retinanet,Resnet

rfcn-resnet101-coco-tf

R-FCN object detection model from "R-FCN: Object Detection via Region-based Fully Convolutional Networks" with ResNet-101 backbone trained on COCO

Detection,Coco,TensorFlow,Rfcn,Resnet

rtdetr-l-coco-torch

RT-DETR-l model trained on COCO

Detection,Coco,PyTorch,Transformer,Rtdetr

rtdetr-x-coco-torch

RT-DETR-x model trained on COCO

Detection,Coco,PyTorch,Transformer,Rtdetr

segment-anything-2-hiera-base-plus-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2-hiera-base-plus-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2-hiera-large-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2-hiera-large-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2-hiera-small-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2-hiera-small-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2-hiera-tiny-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2-hiera-tiny-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2.1-hiera-base-plus-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2.1-hiera-base-plus-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2.1-hiera-large-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2.1-hiera-large-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2.1-hiera-small-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2.1-hiera-small-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-2.1-hiera-tiny-image-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot

segment-anything-2.1-hiera-tiny-video-torch

Segment Anything Model 2 (SAM2) from "SAM2: Segment Anything in Images and Videos"

Segment-anything,PyTorch,Zero-shot,Video

segment-anything-vitb-torch

Segment Anything Model (SAM) from "Segment Anything" with ViT-B/16 backbone trained on SA-1B

Segment-anything,Sa-1b,PyTorch,Zero-shot

segment-anything-vith-torch

Segment Anything Model (SAM) from "Segment Anything" with ViT-H/16 backbone trained on SA-1B

Segment-anything,Sa-1b,PyTorch,Zero-shot

segment-anything-vitl-torch

Segment Anything Model (SAM) from "Segment Anything" with ViT-L/16 backbone trained on SA-1B

Segment-anything,Sa-1b,PyTorch,Zero-shot

segmentation-transformer-torch

Hugging Face Transformers model for semantic segmentation

Segmentation,PyTorch,Transformers

shufflenetv2-0.5x-imagenet-torch

ShuffleNetV2 model from "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" with 0.5x output channels trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Shufflenet

shufflenetv2-1.0x-imagenet-torch

ShuffleNetV2 model from "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" with 1.0x output channels trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Shufflenet

siglip-base-patch16-224-torch

Hugging Face Transformers model for zero-shot image classification

Classification,Logits,Embeddings,PyTorch,Transformers,Zero-shot

squeezenet-1.1-imagenet-torch

SqueezeNet 1.1 model from "the official SqueezeNet repo" trained on ImageNet

Classification,Imagenet,PyTorch,Squeezenet

squeezenet-imagenet-torch

SqueezeNet model from "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and" trained on ImageNet

Classification,Imagenet,PyTorch,Squeezenet

ssd-inception-v2-coco-tf

Inception Single Shot Detector model from "SSD: Single Shot MultiBox Detector" trained on COCO

Detection,Coco,TensorFlow,Ssd,Inception

ssd-mobilenet-v1-coco-tf

Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with MobileNetV1 backbone trained on COCO

Detection,Coco,TensorFlow,Ssd,Mobilenet

ssd-mobilenet-v1-fpn-640-coco17

MobileNetV1 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" resized to 640x640

Detection,Coco,TensorFlow-2,Ssd,Mobilenet

ssd-mobilenet-v1-fpn-coco-tf

FPN Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with MobileNetV1 backbone trained on COCO

Detection,Coco,TensorFlow,Ssd,Mobilenet

ssd-mobilenet-v2-320-coco17

MobileNetV2 model from "MobileNetV2: Inverted Residuals and Linear Bottlenecks" resized to 320x320

Detection,Coco,TensorFlow-2,Ssd,Mobilenet

ssd-resnet50-fpn-coco-tf

FPN Single Shot Detector model from "SSD: Single Shot MultiBox Detector" with ResNet-50 backbone trained on COCO

Detection,Coco,TensorFlow,Ssd,Resnet

vgg11-bn-imagenet-torch

VGG-11 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg11-imagenet-torch

VGG-11 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg13-bn-imagenet-torch

VGG-13 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg13-imagenet-torch

VGG-13 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg16-bn-imagenet-torch

VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg16-imagenet-tf1

VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,TensorFlow-1,Vgg

vgg16-imagenet-torch

VGG-16 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg19-bn-imagenet-torch

VGG-19 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" with batch normalization trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vgg19-imagenet-torch

VGG-19 model from "Very Deep Convolutional Networks for Large-Scale Image Recognition" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Vgg

vit-base-patch16-224-imagenet-torch

Hugging Face Transformers model for image classification

Classification,Logits,Embeddings,PyTorch,Transformers

wide-resnet101-2-imagenet-torch

Wide ResNet-101-2 model from "Wide Residual Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Wide-resnet

wide-resnet50-2-imagenet-torch

Wide ResNet-50-2 model from "Wide Residual Networks" trained on ImageNet

Classification,Embeddings,Logits,Imagenet,PyTorch,Wide-resnet

yolo-nas-torch

YOLO-NAS is an open-source training library for advanced computer vision models. It specializes in accuracy and efficiency, supporting tasks like object detection

Detection,PyTorch,Yolo

yolo-v2-coco-tf1

YOLOv2 model from "YOLO9000: Better, Faster, Stronger" trained on COCO

Detection,Coco,TensorFlow-1,Yolo

yolo11l-coco-torch

YOLO11-L model trained on COCO

Detection,Coco,PyTorch,Yolo

yolo11l-seg-coco-torch

YOLO11-L Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolo11m-coco-torch

YOLO11-M model trained on COCO

Detection,Coco,PyTorch,Yolo

yolo11m-seg-coco-torch

YOLO11-M Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolo11n-coco-torch

YOLO11-N model trained on COCO

Detection,Coco,PyTorch,Yolo

yolo11n-seg-coco-torch

YOLO11-N Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolo11s-coco-torch

YOLO11-S model trained on COCO

Detection,Coco,PyTorch,Yolo

yolo11s-seg-coco-torch

YOLO11-S Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolo11x-coco-torch

YOLO11-X model trained on COCO

Detection,Coco,PyTorch,Yolo

yolo11x-seg-coco-torch

YOLO11-X Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yoloe11l-seg-torch

YOLOE11-L Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yoloe11m-seg-torch

YOLOE11-M Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yoloe11s-seg-torch

YOLOE11-S Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yoloev8l-seg-torch

YOLOEv8l Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yoloev8m-seg-torch

YOLOEv8m Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yoloev8s-seg-torch

YOLOEv8s Segmentation model

Segmentation,PyTorch,Yolo,Zero-shot

yolov10l-coco-torch

YOLOv10-L model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov10m-coco-torch

YOLOv10-M model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov10n-coco-torch

YOLOv10-N model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov10s-coco-torch

YOLOv10-S model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov10x-coco-torch

YOLOv10-X model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov5l-coco-torch

Ultralytics YOLOv5l model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov5m-coco-torch

Ultralytics YOLOv5m model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov5n-coco-torch

Ultralytics YOLOv5n model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov5s-coco-torch

Ultralytics YOLOv5s model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov5x-coco-torch

Ultralytics YOLOv5x model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8l-coco-torch

Ultralytics YOLOv8l model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8l-obb-dotav1-torch

YOLOv8l Oriented Bounding Box model

Detection,PyTorch,Yolo,Polylines,Obb

yolov8l-oiv7-torch

Ultralytics YOLOv8l model trained Open Images v7

Detection,Oiv7,PyTorch,Yolo

yolov8l-seg-coco-torch

Ultralytics YOLOv8l Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov8l-world-torch

YOLOv8l-World model

Detection,PyTorch,Yolo,Zero-shot

yolov8m-coco-torch

Ultralytics YOLOv8m model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8m-obb-dotav1-torch

YOLOv8m Oriented Bounding Box model

Detection,PyTorch,Yolo,Polylines,Obb

yolov8m-oiv7-torch

Ultralytics YOLOv8m model trained Open Images v7

Detection,Oiv7,PyTorch,Yolo

yolov8m-seg-coco-torch

Ultralytics YOLOv8m Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov8m-world-torch

YOLOv8m-World model

Detection,PyTorch,Yolo,Zero-shot

yolov8n-coco-torch

Ultralytics YOLOv8n model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8n-obb-dotav1-torch

YOLOv8n Oriented Bounding Box model

Detection,PyTorch,Yolo,Polylines,Obb

yolov8n-oiv7-torch

Ultralytics YOLOv8n model trained on Open Images v7

Detection,Oiv7,PyTorch,Yolo

yolov8n-seg-coco-torch

Ultralytics YOLOv8n Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov8s-coco-torch

Ultralytics YOLOv8s model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8s-obb-dotav1-torch

YOLOv8s Oriented Bounding Box model

Detection,PyTorch,Yolo,Polylines,Obb

yolov8s-oiv7-torch

Ultralytics YOLOv8s model trained on Open Images v7

Detection,Oiv7,PyTorch,Yolo

yolov8s-seg-coco-torch

Ultralytics YOLOv8s Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov8s-world-torch

YOLOv8s-World model

Detection,PyTorch,Yolo,Zero-shot

yolov8x-coco-torch

Ultralytics YOLOv8x model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov8x-obb-dotav1-torch

YOLOv8x Oriented Bounding Box model

Detection,PyTorch,Yolo,Polylines,Obb

yolov8x-oiv7-torch

Ultralytics YOLOv8x model trained Open Images v7

Detection,Oiv7,PyTorch,Yolo

yolov8x-seg-coco-torch

Ultralytics YOLOv8x Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov8x-world-torch

YOLOv8x-World model

Detection,PyTorch,Yolo,Zero-shot

yolov9c-coco-torch

YOLOv9-C model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov9c-seg-coco-torch

YOLOv9-C Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

yolov9e-coco-torch

YOLOv9-E model trained on COCO

Detection,Coco,PyTorch,Yolo

yolov9e-seg-coco-torch

YOLOv9-E Segmentation model trained on COCO

Segmentation,Coco,PyTorch,Yolo

zero-shot-classification-transformer-torch

Hugging Face Transformers model for zero-shot image classification

Classification,Logits,Embeddings,PyTorch,Transformers,Zero-shot

zero-shot-detection-transformer-torch

Hugging Face Transformers model for zero-shot object detection

Detection,Logits,Embeddings,PyTorch,Transformers,Zero-shot

Torch models#

alexnet-imagenet-torch#

AlexNet model architecture from One weird trick for parallelizing convolutional neural networks trained on ImageNet.

Details

  • Model name: alexnet-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Alex Krizhevsky

  • Model license: BSD 3-Clause

  • Model size: 233.10 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, alexnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("alexnet-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

classification-transformer-torch#

Hugging Face Transformers model for image classification.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("classification-transformer-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

clip-vit-base32-torch#

CLIP text/image encoder from Learning Transferable Visual Models From Natural Language Supervision trained on 400M text-image pairs.

Details

  • Model name: clip-vit-base32-torch

  • Model source: openai/CLIP

  • Model author: Alec Radford, et al.

  • Model license: MIT

  • Model size: 337.58 MB

  • Exposes embeddings? yes

  • Tags: classification, logits, embeddings, torch, clip, zero-shot

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("clip-vit-base32-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "clip-vit-base32-torch",
24    text_prompt="A photo of a",
25    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
26)
27
28dataset.apply_model(model, label_field="predictions")
29session.refresh()

deeplabv3-resnet101-coco-torch#

DeepLabV3 model from Rethinking Atrous Convolution for Semantic Image Segmentation with ResNet-101 backbone trained on COCO.

Details

  • Model name: deeplabv3-resnet101-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Liang-Chieh Chen, et al.

  • Model license: BSD 3-Clause

  • Model size: 233.22 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, resnet, deeplabv3

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("deeplabv3-resnet101-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

deeplabv3-resnet50-coco-torch#

DeepLabV3 model from Rethinking Atrous Convolution for Semantic Image Segmentation with ResNet-50 backbone trained on COCO.

Details

  • Model name: deeplabv3-resnet50-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Liang-Chieh Chen, et al.

  • Model license: BSD 3-Clause

  • Model size: 160.51 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, resnet, deeplabv3

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("deeplabv3-resnet50-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

densenet121-imagenet-torch#

Densenet-121 model from Densely Connected Convolutional Networks trained on ImageNet.

Details

  • Model name: densenet121-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Gao Huang, et al.

  • Model license: BSD 3-Clause

  • Model size: 30.84 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, densenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("densenet121-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

densenet161-imagenet-torch#

Densenet-161 model from Densely Connected Convolutional Networks trained on ImageNet.

Details

  • Model name: densenet161-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Gao Huang, et al.

  • Model license: BSD 3-Clause

  • Model size: 110.37 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, densenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("densenet161-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

densenet169-imagenet-torch#

Densenet-169 model from Densely Connected Convolutional Networks trained on ImageNet.

Details

  • Model name: densenet169-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Gao Huang, et al.

  • Model license: BSD 3-Clause

  • Model size: 54.71 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, densenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("densenet169-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

densenet201-imagenet-torch#

Densenet-201 model from Densely Connected Convolutional Networks trained on ImageNet.

Details

  • Model name: densenet201-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Gao Huang, et al.

  • Model license: BSD 3-Clause

  • Model size: 77.37 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, densenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("densenet201-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

depth-estimation-transformer-torch#

Hugging Face Transformers model for monocular depth estimation.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("depth-estimation-transformer-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

detection-transformer-torch#

Hugging Face Transformers model for object detection.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("detection-transformer-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

dinov2-vitb14-reg-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled.

Details

  • Model name: dinov2-vitb14-reg-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 330.35 MB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitb14-reg-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vitb14-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-B/14 distilled.

Details

  • Model name: dinov2-vitb14-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 330.33 MB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitb14-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vitg14-reg-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14.

Details

  • Model name: dinov2-vitg14-reg-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 4.23 GB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitg14-reg-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vitg14-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-g/14.

Details

  • Model name: dinov2-vitg14-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 4.23 GB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitg14-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vitl14-reg-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled.

Details

  • Model name: dinov2-vitl14-reg-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 1.13 GB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitl14-reg-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vitl14-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-L/14 distilled.

Details

  • Model name: dinov2-vitl14-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 1.13 GB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vitl14-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vits14-reg-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled.

Details

  • Model name: dinov2-vits14-reg-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 84.20 MB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vits14-reg-torch")
13
14embeddings = dataset.compute_embeddings(model)

dinov2-vits14-torch#

DINOv2: Learning Robust Visual Features without Supervision. Model: ViT-S/14 distilled.

Details

  • Model name: dinov2-vits14-torch

  • Model source: facebookresearch/dinov2

  • Model author: Maxime Oquab, et al.

  • Model license: Apache 2.0

  • Model size: 84.19 MB

  • Exposes embeddings? yes

  • Tags: embeddings, torch, dinov2

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("dinov2-vits14-torch")
13
14embeddings = dataset.compute_embeddings(model)

faster-rcnn-resnet50-fpn-coco-torch#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-50 FPN backbone trained on COCO.

Details

  • Model name: faster-rcnn-resnet50-fpn-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Shaoqing Ren, et al.

  • Model license: BSD 3-Clause

  • Model size: 159.74 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, faster-rcnn, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-resnet50-fpn-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

fcn-resnet101-coco-torch#

FCN model from Fully Convolutional Networks for Semantic Segmentation with ResNet-101 backbone trained on COCO.

Details

  • Model name: fcn-resnet101-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Jonathan Long, et al.

  • Model license: BSD 3-Clause

  • Model size: 207.71 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, fcn, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("fcn-resnet101-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

fcn-resnet50-coco-torch#

FCN model from Fully Convolutional Networks for Semantic Segmentation with ResNet-50 backbone trained on COCO.

Details

  • Model name: fcn-resnet50-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Jonathan Long, et al.

  • Model license: BSD 3-Clause

  • Model size: 135.01 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, fcn, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("fcn-resnet50-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

googlenet-imagenet-torch#

GoogLeNet (Inception v1) model from Going Deeper with Convolutions trained on ImageNet.

Details

  • Model name: googlenet-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Christian Szegedy, et al.

  • Model license: BSD 3-Clause

  • Model size: 49.73 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, googlenet

Requirements

  • Packages: scipy, torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("googlenet-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

group-vit-segmentation-transformer-torch#

Hugging Face Transformers model for zero-shot semantic segmentation.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("group-vit-segmentation-transformer-torch",
13    text_prompt="A photo of a",
14    classes=["person", "dog", "cat", "bird", "car", "tree", "other"])
15
16dataset.apply_model(model, label_field="predictions")
17
18session = fo.launch_app(dataset)

inception-v3-imagenet-torch#

Inception v3 model from Rethinking the Inception Architecture for Computer Vision trained on ImageNet.

Details

  • Model name: inception-v3-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Christian Szegedy, et al.

  • Model license: BSD 3-Clause

  • Model size: 103.81 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, inception

Requirements

  • Packages: scipy, torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("inception-v3-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

keypoint-rcnn-resnet50-fpn-coco-torch#

Keypoint R-CNN model from Mask R-CNN with ResNet-50 FPN backbone trained on COCO.

Details

  • Model name: keypoint-rcnn-resnet50-fpn-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 226.05 MB

  • Exposes embeddings? no

  • Tags: keypoints, coco, torch, keypoint-rcnn, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("keypoint-rcnn-resnet50-fpn-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

mask-rcnn-resnet50-fpn-coco-torch#

Mask R-CNN model from Mask R-CNN with ResNet-50 FPN backbone trained on COCO.

Details

  • Model name: mask-rcnn-resnet50-fpn-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 169.84 MB

  • Exposes embeddings? no

  • Tags: instances, coco, torch, mask-rcnn, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("mask-rcnn-resnet50-fpn-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

med-sam-2-video-torch#

Fine-tuned SAM2-hiera-tiny model from Medical SAM 2 - Segment Medical Images as Video via Segment Anything Model 2.

Details

  • Model name: med-sam-2-video-torch

  • Model source: MedicineToken/Medical-SAM2

  • Model author: Jiayuan Zhu, et al.

  • Model license: Apache 2.0

  • Model size: 74.46 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video, med-SAM

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4from fiftyone.utils.huggingface import load_from_hub
 5
 6dataset = load_from_hub("Voxel51/BTCV-CT-as-video-MedSAM2-dataset")[:2]
 7
 8# Retaining detections from a single frame in the middle
 9# Note that SAM2 only propagates segmentation masks forward in a video
10(
11    dataset
12    .match_frames(F("frame_number") != 100)
13    .set_field("frames.gt_detections", None)
14    .save()
15)
16
17model = foz.load_zoo_model("med-sam-2-video-torch")
18
19# Segment inside boxes and propagate to all frames
20dataset.apply_model(
21    model,
22    label_field="pred_segmentations",
23    prompt_field="frames.gt_detections",
24)
25
26session = fo.launch_app(dataset)

mnasnet0.5-imagenet-torch#

MNASNet model from MnasNet: Platform-Aware Neural Architecture Search for Mobile with depth multiplier of 0.5 trained on ImageNet.

Details

  • Model name: mnasnet0.5-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Mingxing Tan, et al.

  • Model license: BSD 3-Clause

  • Model size: 8.59 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, mnasnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("mnasnet0.5-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

mnasnet1.0-imagenet-torch#

MNASNet model from MnasNet: Platform-Aware Neural Architecture Search for Mobile with depth multiplier of 1.0 trained on ImageNet.

Details

  • Model name: mnasnet1.0-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Mingxing Tan, et al.

  • Model license: BSD 3-Clause

  • Model size: 16.92 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, mnasnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("mnasnet1.0-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

mobilenet-v2-imagenet-torch#

MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks trained on ImageNet.

Details

  • Model name: mobilenet-v2-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Mark Sandler, et al.

  • Model license: BSD 3-Clause

  • Model size: 13.55 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, mobilenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("mobilenet-v2-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

omdet-turbo-swin-tiny-torch#

Hugging Face Transformers OmDet-Turbo.

Details

Requirements

  • Packages: torch, torchvision, transformers>=4.51

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12
13classes = ["person", "dog", "cat", "bird", "car", "tree", "chair"]
14
15model = foz.load_zoo_model(
16    "omdet-turbo-swin-tiny-torch",
17    classes=classes,
18)
19
20dataset.apply_model(model, label_field="predictions")
21
22session = fo.launch_app(dataset)

open-clip-torch#

OPEN CLIP text/image encoder from Learning Transferable Visual Models From Natural Language Supervision trained on 400M text-image pairs.

Details

  • Model name: open-clip-torch

  • Model source: mlfoundations/open_clip

  • Model author: Gabriel Ilharco, et al.

  • Model license: MIT

  • Exposes embeddings? yes

  • Tags: classification, logits, embeddings, torch, clip, zero-shot

Requirements

  • Packages: torch, torchvision, open_clip_torch

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("open-clip-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "open-clip-torch",
24    text_prompt="A photo of a",
25    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
26)
27
28dataset.apply_model(model, label_field="predictions")
29session.refresh()

owlvit-base-patch16-torch#

Hugging Face Transformers OWL-ViT.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12
13classes = ["person", "dog", "cat", "bird", "car", "tree", "chair"]
14
15model = foz.load_zoo_model(
16    "owlvit-base-patch16-torch",
17    classes=classes,
18)
19
20dataset.apply_model(model, label_field="predictions")
21
22session = fo.launch_app(dataset)

resnet101-imagenet-torch#

ResNet-101 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet101-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 170.45 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet101-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet152-imagenet-torch#

ResNet-152 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet152-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 230.34 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet152-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet18-imagenet-torch#

ResNet-18 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet18-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 44.66 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet18-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet34-imagenet-torch#

ResNet-34 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet34-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 83.26 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet34-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet50-imagenet-torch#

ResNet-50 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet50-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Kaiming He, et al.

  • Model license: BSD 3-Clause

  • Model size: 97.75 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet50-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnext101-32x8d-imagenet-torch#

ResNeXt-101 32x8d model from Aggregated Residual Transformations for Deep Neural Networks trained on ImageNet.

Details

  • Model name: resnext101-32x8d-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Saining Xie, et al.

  • Model license: BSD 3-Clause

  • Model size: 339.59 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnext

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnext101-32x8d-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnext50-32x4d-imagenet-torch#

ResNeXt-50 32x4d model from Aggregated Residual Transformations for Deep Neural Networks trained on ImageNet.

Details

  • Model name: resnext50-32x4d-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Saining Xie, et al.

  • Model license: BSD 3-Clause

  • Model size: 95.79 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, resnext

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnext50-32x4d-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

retinanet-resnet50-fpn-coco-torch#

RetinaNet model from Focal Loss for Dense Object Detection with ResNet-50 FPN backbone trained on COCO.

Details

  • Model name: retinanet-resnet50-fpn-coco-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Tsung-Yi Lin, et al.

  • Model license: BSD 3-Clause

  • Model size: 130.27 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, retinanet, resnet

Requirements

  • Packages: torch, torchvision>=0.8.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("retinanet-resnet50-fpn-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

rtdetr-l-coco-torch#

RT-DETR-l model trained on COCO.

Details

  • Model name: rtdetr-l-coco-torch

  • Model source: https://docs.ultralytics.com/models/rtdetr/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 63.43 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, transformer, rtdetr

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("rtdetr-l-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

rtdetr-x-coco-torch#

RT-DETR-x model trained on COCO.

Details

  • Model name: rtdetr-x-coco-torch

  • Model source: https://docs.ultralytics.com/models/rtdetr/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 129.47 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, transformer, rtdetr

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("rtdetr-x-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

segment-anything-2-hiera-base-plus-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-base-plus-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 308.51 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2-hiera-base-plus-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-base-plus-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-base-plus-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 308.51 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2-hiera-base-plus-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-large-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-large-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 856.35 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2-hiera-large-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-large-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-large-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 856.35 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2-hiera-large-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-small-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-small-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 175.77 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2-hiera-small-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-small-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-small-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 175.77 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2-hiera-small-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-tiny-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-tiny-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 148.68 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2-hiera-tiny-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2-hiera-tiny-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2-hiera-tiny-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 148.68 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2-hiera-tiny-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-base-plus-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-base-plus-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 308.62 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2.1-hiera-base-plus-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-base-plus-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-base-plus-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 308.62 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2.1-hiera-base-plus-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-large-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-large-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 856.48 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2.1-hiera-large-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-large-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-large-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 856.48 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2.1-hiera-large-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-small-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-small-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 175.87 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2.1-hiera-small-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-small-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-small-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 175.87 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2.1-hiera-small-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-tiny-image-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-tiny-image-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 148.68 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-2.1-hiera-tiny-image-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-2.1-hiera-tiny-video-torch#

Segment Anything Model 2 (SAM2) from SAM2: Segment Anything in Images and Videos.

Details

  • Model name: segment-anything-2.1-hiera-tiny-video-torch

  • Model source: https://ai.meta.com/sam2/

  • Model author: Nikhila Ravi, et al.

  • Model license: Apache 2.0,BSD 3-Clause

  • Model size: 148.68 MB

  • Exposes embeddings? no

  • Tags: segment-anything, torch, zero-shot, video

Requirements

  • Packages: torch, torchvision, sam2

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3from fiftyone import ViewField as F
 4
 5dataset = foz.load_zoo_dataset("quickstart-video", max_samples=2)
 6
 7# Only retain detections in the first frame
 8(
 9    dataset
10    .match_frames(F("frame_number") > 1)
11    .set_field("frames.detections", None)
12    .save()
13)
14
15model = foz.load_zoo_model("segment-anything-2.1-hiera-tiny-video-torch")
16
17# Segment inside boxes and propagate to all frames
18dataset.apply_model(
19    model,
20    label_field="segmentations",
21    prompt_field="frames.detections",  # can contain Detections or Keypoints
22)
23
24session = fo.launch_app(dataset)

segment-anything-vitb-torch#

Segment Anything Model (SAM) from Segment Anything with ViT-B/16 backbone trained on SA-1B.

Details

  • Model name: segment-anything-vitb-torch

  • Model source: https://segment-anything.com

  • Model author: Alexander Kirillov, et al.

  • Model license: Apache 2.0

  • Model size: 357.67 MB

  • Exposes embeddings? no

  • Tags: segment-anything, sa-1b, torch, zero-shot

Requirements

  • Packages: torch, torchvision, segment-anything

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-vitb-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-vith-torch#

Segment Anything Model (SAM) from Segment Anything with ViT-H/16 backbone trained on SA-1B.

Details

  • Model name: segment-anything-vith-torch

  • Model source: https://segment-anything.com

  • Model author: Alexander Kirillov, et al.

  • Model license: Apache 2.0

  • Model size: 2.39 GB

  • Exposes embeddings? no

  • Tags: segment-anything, sa-1b, torch, zero-shot

Requirements

  • Packages: torch, torchvision, segment-anything

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-vith-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segment-anything-vitl-torch#

Segment Anything Model (SAM) from Segment Anything with ViT-L/16 backbone trained on SA-1B.

Details

  • Model name: segment-anything-vitl-torch

  • Model source: https://segment-anything.com

  • Model author: Alexander Kirillov, et al.

  • Model license: Apache 2.0

  • Model size: 1.16 GB

  • Exposes embeddings? no

  • Tags: segment-anything, sa-1b, torch, zero-shot

Requirements

  • Packages: torch, torchvision, segment-anything

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segment-anything-vitl-torch")
13
14# Segment inside boxes
15dataset.apply_model(
16    model,
17    label_field="segmentations",
18    prompt_field="ground_truth",  # can contain Detections or Keypoints
19)
20
21# Full automatic segmentations
22dataset.apply_model(model, label_field="auto")
23
24session = fo.launch_app(dataset)

segmentation-transformer-torch#

Hugging Face Transformers model for semantic segmentation.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("segmentation-transformer-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

shufflenetv2-0.5x-imagenet-torch#

ShuffleNetV2 model from ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design with 0.5x output channels trained on ImageNet.

Details

  • Model name: shufflenetv2-0.5x-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Ningning Ma, et al.

  • Model license: BSD 3-Clause

  • Model size: 5.28 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, shufflenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("shufflenetv2-0.5x-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

shufflenetv2-1.0x-imagenet-torch#

ShuffleNetV2 model from ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design with 1.0x output channels trained on ImageNet.

Details

  • Model name: shufflenetv2-1.0x-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Ningning Ma, et al.

  • Model license: BSD 3-Clause

  • Model size: 8.79 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, shufflenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("shufflenetv2-1.0x-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

siglip-base-patch16-224-torch#

Hugging Face Transformers model for zero-shot image classification.

Details

Requirements

  • Packages: torch, torchvision, transformers>=4.51

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12
13classes = ["person", "dog", "cat", "bird", "car", "tree", "chair"]
14
15model = foz.load_zoo_model(
16    "siglip-base-patch16-224-torch",
17    classes=classes,
18)
19
20dataset.apply_model(model, label_field="predictions")
21
22session = fo.launch_app(dataset)

squeezenet-1.1-imagenet-torch#

SqueezeNet 1.1 model from the official SqueezeNet repo trained on ImageNet.

Details

  • Model name: squeezenet-1.1-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Forrest Iandola

  • Model license: BSD 2-Clause

  • Model size: 4.74 MB

  • Exposes embeddings? no

  • Tags: classification, imagenet, torch, squeezenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("squeezenet-1.1-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

squeezenet-imagenet-torch#

SqueezeNet model from SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size trained on ImageNet.

Details

  • Model name: squeezenet-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Forrest Iandola

  • Model license: BSD 2-Clause

  • Model size: 4.79 MB

  • Exposes embeddings? no

  • Tags: classification, imagenet, torch, squeezenet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("squeezenet-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg11-bn-imagenet-torch#

VGG-11 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.

Details

  • Model name: vgg11-bn-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 506.88 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg11-bn-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg11-imagenet-torch#

VGG-11 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.

Details

  • Model name: vgg11-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 506.84 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg11-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg13-bn-imagenet-torch#

VGG-13 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.

Details

  • Model name: vgg13-bn-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 507.59 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg13-bn-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg13-imagenet-torch#

VGG-13 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.

Details

  • Model name: vgg13-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 507.54 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg13-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg16-bn-imagenet-torch#

VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.

Details

  • Model name: vgg16-bn-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 527.87 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg16-bn-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg16-imagenet-torch#

VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.

Details

  • Model name: vgg16-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 527.80 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg16-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg19-bn-imagenet-torch#

VGG-19 model from Very Deep Convolutional Networks for Large-Scale Image Recognition with batch normalization trained on ImageNet.

Details

  • Model name: vgg19-bn-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 548.14 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg19-bn-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vgg19-imagenet-torch#

VGG-19 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.

Details

  • Model name: vgg19-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Karen Simonyan, et al.

  • Model license: BSD 3-Clause

  • Model size: 548.05 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, vgg

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg19-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

vit-base-patch16-224-imagenet-torch#

Hugging Face Transformers model for image classification.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vit-base-patch16-224-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

wide-resnet101-2-imagenet-torch#

Wide ResNet-101-2 model from Wide Residual Networks trained on ImageNet.

Details

  • Model name: wide-resnet101-2-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Sergey Zagoruyko, et al.

  • Model license: BSD 3-Clause

  • Model size: 242.90 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, wide-resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("wide-resnet101-2-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

wide-resnet50-2-imagenet-torch#

Wide ResNet-50-2 model from Wide Residual Networks trained on ImageNet.

Details

  • Model name: wide-resnet50-2-imagenet-torch

  • Model source: https://pytorch.org/vision/main/models.html

  • Model author: Sergey Zagoruyko, et al.

  • Model license: BSD 3-Clause

  • Model size: 131.82 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, torch, wide-resnet

Requirements

  • Packages: torch, torchvision

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("wide-resnet50-2-imagenet-torch")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

yolo-nas-torch#

YOLO-NAS is an open-source training library for advanced computer vision models. It specializes in accuracy and efficiency, supporting tasks like object detection.

Details

  • Model name: yolo-nas-torch

  • Model source: Deci-AI/super-gradients

  • Model author: Shay Aharon, et al.

  • Model license: Apache 2.0

  • Exposes embeddings? no

  • Tags: detection, torch, yolo

Requirements

  • Packages: torch, torchvision, super-gradients

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo-nas-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11l-coco-torch#

YOLO11-L model trained on COCO.

Details

  • Model name: yolo11l-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov11/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 49.01 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11l-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11l-seg-coco-torch#

YOLO11-L Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11l-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11m-coco-torch#

YOLO11-M model trained on COCO.

Details

  • Model name: yolo11m-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov11/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 38.80 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11m-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11m-seg-coco-torch#

YOLO11-M Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11m-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11n-coco-torch#

YOLO11-N model trained on COCO.

Details

  • Model name: yolo11n-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov11/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 5.35 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11n-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11n-seg-coco-torch#

YOLO11-N Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11n-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11s-coco-torch#

YOLO11-S model trained on COCO.

Details

  • Model name: yolo11s-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov11/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 18.42 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11s-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11s-seg-coco-torch#

YOLO11-S Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11s-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11x-coco-torch#

YOLO11-X model trained on COCO.

Details

  • Model name: yolo11x-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov11/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 109.33 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11x-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolo11x-seg-coco-torch#

YOLO11-X Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo11x-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yoloe11l-seg-torch#

YOLOE11-L Segmentation model.

Details

  • Model name: yoloe11l-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 67.69 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloe11l-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloe11l-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yoloe11m-seg-torch#

YOLOE11-M Segmentation model.

Details

  • Model name: yoloe11m-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 57.48 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloe11m-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloe11m-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yoloe11s-seg-torch#

YOLOE11-S Segmentation model.

Details

  • Model name: yoloe11s-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 26.52 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloe11s-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloe11s-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yoloev8l-seg-torch#

YOLOEv8l Segmentation model.

Details

  • Model name: yoloev8l-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 102.43 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloev8l-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloev8l-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yoloev8m-seg-torch#

YOLOEv8m Segmentation model.

Details

  • Model name: yoloev8m-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 62.75 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloev8m-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloev8m-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yoloev8s-seg-torch#

YOLOEv8s Segmentation model.

Details

  • Model name: yoloev8s-seg-torch

  • Model source: https://docs.ultralytics.com/models/yoloe

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 29.69 MB

  • Exposes embeddings? no

  • Tags: segmentation, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.3.99

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yoloev8s-seg-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yoloev8s-seg-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yolov10l-coco-torch#

YOLOv10-L model trained on COCO.

Details

  • Model name: yolov10l-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov10/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 50.00 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov10l-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov10m-coco-torch#

YOLOv10-M model trained on COCO.

Details

  • Model name: yolov10m-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov10/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 32.09 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov10m-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov10n-coco-torch#

YOLOv10-N model trained on COCO.

Details

  • Model name: yolov10n-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov10/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 5.59 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov10n-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov10s-coco-torch#

YOLOv10-S model trained on COCO.

Details

  • Model name: yolov10s-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov10/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 15.85 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov10s-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov10x-coco-torch#

YOLOv10-X model trained on COCO.

Details

  • Model name: yolov10x-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov10/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 61.41 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.2.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov10x-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov5l-coco-torch#

Ultralytics YOLOv5l model trained on COCO.

Details

  • Model name: yolov5l-coco-torch

  • Model source: https://pytorch.org/hub/ultralytics_yolov5

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 101.96 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov5l-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov5m-coco-torch#

Ultralytics YOLOv5m model trained on COCO.

Details

  • Model name: yolov5m-coco-torch

  • Model source: https://pytorch.org/hub/ultralytics_yolov5

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 48.25 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov5m-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov5n-coco-torch#

Ultralytics YOLOv5n model trained on COCO.

Details

  • Model name: yolov5n-coco-torch

  • Model source: https://pytorch.org/hub/ultralytics_yolov5

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 5.31 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov5n-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov5s-coco-torch#

Ultralytics YOLOv5s model trained on COCO.

Details

  • Model name: yolov5s-coco-torch

  • Model source: https://pytorch.org/hub/ultralytics_yolov5

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 17.72 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov5s-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov5x-coco-torch#

Ultralytics YOLOv5x model trained on COCO.

Details

  • Model name: yolov5x-coco-torch

  • Model source: https://pytorch.org/hub/ultralytics_yolov5

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 186.09 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov5x-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8l-coco-torch#

Ultralytics YOLOv8l model trained on COCO.

Details

  • Model name: yolov8l-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 83.70 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8l-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8l-obb-dotav1-torch#

YOLOv8l Oriented Bounding Box model.

Details

  • Model name: yolov8l-obb-dotav1-torch

  • Model source: https://docs.ultralytics.com/tasks/obb/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 85.36 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, polylines, obb

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8l-obb-dotav1-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8l-oiv7-torch#

Ultralytics YOLOv8l model trained Open Images v7.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8l-oiv7-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8l-seg-coco-torch#

Ultralytics YOLOv8l Segmentation model trained on COCO.

Details

  • Model name: yolov8l-seg-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 88.11 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8l-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8l-world-torch#

YOLOv8l-World model.

Details

  • Model name: yolov8l-world-torch

  • Model source: https://docs.ultralytics.com/models/yolo-world/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 91.23 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8l-world-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yolov8l-world-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yolov8m-coco-torch#

Ultralytics YOLOv8m model trained on COCO.

Details

  • Model name: yolov8m-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 49.70 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8m-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8m-obb-dotav1-torch#

YOLOv8m Oriented Bounding Box model.

Details

  • Model name: yolov8m-obb-dotav1-torch

  • Model source: https://docs.ultralytics.com/tasks/obb/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 50.84 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, polylines, obb

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8m-obb-dotav1-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8m-oiv7-torch#

Ultralytics YOLOv8m model trained Open Images v7.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8m-oiv7-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8m-seg-coco-torch#

Ultralytics YOLOv8m Segmentation model trained on COCO.

Details

  • Model name: yolov8m-seg-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 52.36 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8m-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8m-world-torch#

YOLOv8m-World model.

Details

  • Model name: yolov8m-world-torch

  • Model source: https://docs.ultralytics.com/models/yolo-world/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 55.89 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8m-world-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yolov8m-world-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yolov8n-coco-torch#

Ultralytics YOLOv8n model trained on COCO.

Details

  • Model name: yolov8n-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 6.23 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8n-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8n-obb-dotav1-torch#

YOLOv8n Oriented Bounding Box model.

Details

  • Model name: yolov8n-obb-dotav1-torch

  • Model source: https://docs.ultralytics.com/tasks/obb/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 6.24 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, polylines, obb

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8n-obb-dotav1-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8n-oiv7-torch#

Ultralytics YOLOv8n model trained on Open Images v7.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8n-oiv7-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8n-seg-coco-torch#

Ultralytics YOLOv8n Segmentation model trained on COCO.

Details

  • Model name: yolov8n-seg-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 6.73 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8n-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8s-coco-torch#

Ultralytics YOLOv8s model trained on COCO.

Details

  • Model name: yolov8s-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 21.53 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8s-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8s-obb-dotav1-torch#

YOLOv8s Oriented Bounding Box model.

Details

  • Model name: yolov8s-obb-dotav1-torch

  • Model source: https://docs.ultralytics.com/tasks/obb/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 22.17 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, polylines, obb

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8s-obb-dotav1-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8s-oiv7-torch#

Ultralytics YOLOv8s model trained on Open Images v7.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8s-oiv7-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8s-seg-coco-torch#

Ultralytics YOLOv8s Segmentation model trained on COCO.

Details

  • Model name: yolov8s-seg-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 22.79 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8s-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8s-world-torch#

YOLOv8s-World model.

Details

  • Model name: yolov8s-world-torch

  • Model source: https://docs.ultralytics.com/models/yolo-world/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 25.91 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8s-world-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yolov8s-world-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yolov8x-coco-torch#

Ultralytics YOLOv8x model trained on COCO.

Details

  • Model name: yolov8x-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 130.53 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8x-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8x-obb-dotav1-torch#

YOLOv8x Oriented Bounding Box model.

Details

  • Model name: yolov8x-obb-dotav1-torch

  • Model source: https://docs.ultralytics.com/tasks/obb/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 133.07 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, polylines, obb

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8x-obb-dotav1-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8x-oiv7-torch#

Ultralytics YOLOv8x model trained Open Images v7.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8x-oiv7-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8x-seg-coco-torch#

Ultralytics YOLOv8x Segmentation model trained on COCO.

Details

  • Model name: yolov8x-seg-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov8/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 137.40 MB

  • Exposes embeddings? no

  • Tags: segmentation, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8x-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov8x-world-torch#

YOLOv8x-World model.

Details

  • Model name: yolov8x-world-torch

  • Model source: https://docs.ultralytics.com/models/yolo-world/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 141.11 MB

  • Exposes embeddings? no

  • Tags: detection, torch, yolo, zero-shot

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov8x-world-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)
17
18#
19# Make zero-shot predictions with custom classes
20#
21
22model = foz.load_zoo_model(
23    "yolov8x-world-torch",
24    classes=["person", "dog", "cat", "bird", "car", "tree", "chair"],
25)
26
27dataset.apply_model(model, label_field="predictions")
28session.refresh()

yolov9c-coco-torch#

YOLOv9-C model trained on COCO.

Details

  • Model name: yolov9c-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov9/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 49.40 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov9c-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov9c-seg-coco-torch#

YOLOv9-C Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.42

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov9c-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov9e-coco-torch#

YOLOv9-E model trained on COCO.

Details

  • Model name: yolov9e-coco-torch

  • Model source: https://docs.ultralytics.com/models/yolov9/

  • Model author: Glenn Jocher, et al.

  • Model license: AGPL-3.0

  • Model size: 112.09 MB

  • Exposes embeddings? no

  • Tags: detection, coco, torch, yolo

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.0

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov9e-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

yolov9e-seg-coco-torch#

YOLOv9-E Segmentation model trained on COCO.

Details

Requirements

  • Packages: torch>=1.7.0, torchvision>=0.8.1, ultralytics>=8.1.42

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolov9e-seg-coco-torch")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

zero-shot-classification-transformer-torch#

Hugging Face Transformers model for zero-shot image classification.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12classes = ["person", "dog", "cat", "bird", "car", "tree", "chair"]
13
14model = foz.load_zoo_model(
15    "zero-shot-classification-transformer-torch",
16    classes=classes,
17)
18
19dataset.apply_model(model, label_field="predictions")
20
21session = fo.launch_app(dataset)
22
23# some models make require additional arguments
24# check the Hugging Face docs to see if any are needed
25
26# for example, AltCLIP requires `padding=True` in its processor
27model = foz.load_zoo_model(
28    "zero-shot-classification-transformer-torch",
29    classes=classes,
30    name_or_path="BAAI/AltCLIP",
31    transformers_processor_kwargs={
32        "padding": True,
33    }
34)
35
36dataset.apply_model(model, label_field="predictions")
37
38session = fo.launch_app(dataset)

zero-shot-detection-transformer-torch#

Hugging Face Transformers model for zero-shot object detection.

Details

Requirements

  • Packages: torch, torchvision, transformers

  • CPU support

    • yes

  • GPU support

    • yes

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12classes = ["person", "dog", "cat", "bird", "car", "tree", "chair"]
13
14model = foz.load_zoo_model(
15    "zero-shot-detection-transformer-torch",
16    classes=classes,
17)
18
19dataset.apply_model(model, label_field="predictions")
20
21session = fo.launch_app(dataset)

TensorFlow models#

centernet-hg104-1024-coco-tf2#

CenterNet model from Objects as Points with the Hourglass-104 backbone trained on COCO resized to 1024x1024.

Details

  • Model name: centernet-hg104-1024-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 1.33 GB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-hg104-1024-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

centernet-hg104-512-coco-tf2#

CenterNet model from Objects as Points with the Hourglass-104 backbone trained on COCO resized to 512x512.

Details

  • Model name: centernet-hg104-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 1.49 GB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-hg104-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

centernet-mobilenet-v2-fpn-512-coco-tf2#

CenterNet model from Objects as Points with the MobileNetV2 backbone trained on COCO resized to 512x512.

Details

  • Model name: centernet-mobilenet-v2-fpn-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 41.98 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-mobilenet-v2-fpn-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

centernet-resnet101-v1-fpn-512-coco-tf2#

CenterNet model from Objects as Points with the ResNet-101v1 backbone + FPN trained on COCO resized to 512x512.

Details

  • Model name: centernet-resnet101-v1-fpn-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 329.96 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-resnet101-v1-fpn-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

centernet-resnet50-v1-fpn-512-coco-tf2#

CenterNet model from Objects as Points with the ResNet-50-v1 backbone + FPN trained on COCO resized to 512x512.

Details

  • Model name: centernet-resnet50-v1-fpn-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 194.61 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-resnet50-v1-fpn-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

centernet-resnet50-v2-512-coco-tf2#

CenterNet model from Objects as Points with the ResNet-50v2 backbone trained on COCO resized to 512x512.

Details

  • Model name: centernet-resnet50-v2-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Xingyi Zhou, et al.

  • Model license: Apache 2.0

  • Model size: 226.95 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, centernet, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("centernet-resnet50-v2-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

deeplabv3-cityscapes-tf#

DeepLabv3+ semantic segmentation model from Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation with Xception backbone trained on the Cityscapes dataset.

Details

  • Model name: deeplabv3-cityscapes-tf

  • Model source: tensorflow/models

  • Model author: Liang-Chieh Chen, et al.

  • Model license: Apache 2.0

  • Model size: 158.04 MB

  • Exposes embeddings? no

  • Tags: segmentation, cityscapes, tf, deeplabv3

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("deeplabv3-cityscapes-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

deeplabv3-mnv2-cityscapes-tf#

DeepLabv3+ semantic segmentation model from Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation with MobileNetV2 backbone trained on the Cityscapes dataset.

Details

  • Model name: deeplabv3-mnv2-cityscapes-tf

  • Model source: tensorflow/models

  • Model author: Liang-Chieh Chen, et al.

  • Model license: Apache 2.0

  • Model size: 8.37 MB

  • Exposes embeddings? no

  • Tags: segmentation, cityscapes, tf, deeplabv3

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("deeplabv3-mnv2-cityscapes-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d0-512-coco-tf2#

EfficientDet-D0 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 512x512.

Details

  • Model name: efficientdet-d0-512-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 29.31 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d0-512-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d0-coco-tf1#

EfficientDet-D0 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d0-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 38.20 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d0-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d1-640-coco-tf2#

EfficientDet-D1 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 640x640.

Details

  • Model name: efficientdet-d1-640-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 49.44 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d1-640-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d1-coco-tf1#

EfficientDet-D1 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d1-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 61.64 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d1-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d2-768-coco-tf2#

EfficientDet-D2 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 768x768.

Details

  • Model name: efficientdet-d2-768-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 60.01 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d2-768-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d2-coco-tf1#

EfficientDet-D2 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d2-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 74.00 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d2-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d3-896-coco-tf2#

EfficientDet-D3 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 896x896.

Details

  • Model name: efficientdet-d3-896-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 88.56 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d3-896-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d3-coco-tf1#

EfficientDet-D3 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d3-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 106.44 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d3-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d4-1024-coco-tf2#

EfficientDet-D4 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1024x1024.

Details

  • Model name: efficientdet-d4-1024-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 151.15 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d4-1024-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d4-coco-tf1#

EfficientDet-D4 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d4-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 175.33 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d4-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d5-1280-coco-tf2#

EfficientDet-D5 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1280x1280.

Details

  • Model name: efficientdet-d5-1280-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 244.41 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d5-1280-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d5-coco-tf1#

EfficientDet-D5 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d5-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 275.81 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d5-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d6-1280-coco-tf2#

EfficientDet-D6 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1280x1280.

Details

  • Model name: efficientdet-d6-1280-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 375.63 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d6-1280-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d6-coco-tf1#

EfficientDet-D6 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO.

Details

  • Model name: efficientdet-d6-coco-tf1

  • Model source: voxel51/automl

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 416.43 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=1.14,<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=1.14,<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d6-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

efficientdet-d7-1536-coco-tf2#

EfficientDet-D7 model from EfficientDet: Scalable and Efficient Object Detection trained on COCO resized to 1536x1536.

Details

  • Model name: efficientdet-d7-1536-coco-tf2

  • Model source: tensorflow/models

  • Model author: Mingxing Tan, et al.

  • Model license: Apache 2.0

  • Model size: 376.20 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, efficientdet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("efficientdet-d7-1536-coco-tf2")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-inception-resnet-atrous-v2-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks atrous version with Inception backbone trained on COCO.

Details

  • Model name: faster-rcnn-inception-resnet-atrous-v2-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 234.46 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, inception, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-inception-resnet-atrous-v2-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks atrous version with low-proposals and Inception backbone trained on COCO.

Details

  • Model name: faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 234.46 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, inception, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-inception-resnet-atrous-v2-lowproposals-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-inception-v2-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with Inception v2 backbone trained on COCO.

Details

  • Model name: faster-rcnn-inception-v2-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 52.97 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, inception

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-inception-v2-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-nas-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with NAS-net backbone trained on COCO.

Details

  • Model name: faster-rcnn-nas-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 404.95 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-nas-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-nas-lowproposals-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and NAS-net backbone trained on COCO.

Details

  • Model name: faster-rcnn-nas-lowproposals-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 404.88 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-nas-lowproposals-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-resnet101-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-101 backbone trained on COCO.

Details

  • Model name: faster-rcnn-resnet101-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 186.41 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-resnet101-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-resnet101-lowproposals-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and ResNet-101 backbone trained on COCO.

Details

  • Model name: faster-rcnn-resnet101-lowproposals-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 186.41 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-resnet101-lowproposals-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-resnet50-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with ResNet-50 backbone trained on COCO.

Details

  • Model name: faster-rcnn-resnet50-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 113.57 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-resnet50-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

faster-rcnn-resnet50-lowproposals-coco-tf#

Faster R-CNN model from Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks with low-proposals and ResNet-50 backbone trained on COCO.

Details

  • Model name: faster-rcnn-resnet50-lowproposals-coco-tf

  • Model source: tensorflow/models

  • Model author: Shaoqing Ren, et al.

  • Model license: Apache 2.0

  • Model size: 113.57 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, faster-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("faster-rcnn-resnet50-lowproposals-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

inception-resnet-v2-imagenet-tf1#

Inception v2 model from Rethinking the Inception Architecture for Computer Vision trained on ImageNet.

Details

  • Model name: inception-resnet-v2-imagenet-tf1

  • Model source: tensorflow/models

  • Model author: Christian Szegedy, et al.

  • Model license: Apache 2.0

  • Model size: 213.81 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, tf1, inception, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("inception-resnet-v2-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

inception-v4-imagenet-tf1#

Inception v4 model from Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning trained on ImageNet.

Details

  • Model name: inception-v4-imagenet-tf1

  • Model source: tensorflow/models

  • Model author: Christian Szegedy, et al.

  • Model license: Apache 2.0

  • Model size: 163.31 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, tf1, inception

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("inception-v4-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

mask-rcnn-inception-resnet-v2-atrous-coco-tf#

Mask R-CNN model from Mask R-CNN atrous version with Inception backbone trained on COCO.

Details

  • Model name: mask-rcnn-inception-resnet-v2-atrous-coco-tf

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 254.51 MB

  • Exposes embeddings? no

  • Tags: instances, coco, tf, mask-rcnn, inception, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("mask-rcnn-inception-resnet-v2-atrous-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

mask-rcnn-inception-v2-coco-tf#

Mask R-CNN model from Mask R-CNN with Inception backbone trained on COCO.

Details

  • Model name: mask-rcnn-inception-v2-coco-tf

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 64.03 MB

  • Exposes embeddings? no

  • Tags: instances, coco, tf, mask-rcnn, inception

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("mask-rcnn-inception-v2-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

mask-rcnn-resnet101-atrous-coco-tf#

Mask R-CNN model from Mask R-CNN atrous version with ResNet-101 backbone trained on COCO.

Details

  • Model name: mask-rcnn-resnet101-atrous-coco-tf

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 211.56 MB

  • Exposes embeddings? no

  • Tags: instances, coco, tf, mask-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("mask-rcnn-resnet101-atrous-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

mask-rcnn-resnet50-atrous-coco-tf#

Mask R-CNN model from Mask R-CNN atrous version with ResNet-50 backbone trained on COCO.

Details

  • Model name: mask-rcnn-resnet50-atrous-coco-tf

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 138.29 MB

  • Exposes embeddings? no

  • Tags: instances, coco, tf, mask-rcnn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("mask-rcnn-resnet50-atrous-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

mobilenet-v2-imagenet-tf1#

MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks trained on ImageNet.

Details

  • Model name: mobilenet-v2-imagenet-tf1

  • Model source: tensorflow/models

  • Model author: Mark Sandler, et al.

  • Model license: Apache 2.0

  • Model size: 13.64 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, tf1, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("mobilenet-v2-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet-v1-50-imagenet-tf1#

ResNet-50 v1 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet-v1-50-imagenet-tf1

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 97.84 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, tf1, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet-v1-50-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

resnet-v2-50-imagenet-tf1#

ResNet-50 v2 model from Deep Residual Learning for Image Recognition trained on ImageNet.

Details

  • Model name: resnet-v2-50-imagenet-tf1

  • Model source: tensorflow/models

  • Model author: Kaiming He, et al.

  • Model license: Apache 2.0

  • Model size: 97.86 MB

  • Exposes embeddings? yes

  • Tags: classification, embeddings, logits, imagenet, tf1, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("resnet-v2-50-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

rfcn-resnet101-coco-tf#

R-FCN object detection model from R-FCN: Object Detection via Region-based Fully Convolutional Networks with ResNet-101 backbone trained on COCO.

Details

  • Model name: rfcn-resnet101-coco-tf

  • Model source: tensorflow/models

  • Model author: Jifeng Dai, et al.

  • Model license: Apache 2.0

  • Model size: 208.16 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, rfcn, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("rfcn-resnet101-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-inception-v2-coco-tf#

Inception Single Shot Detector model from SSD: Single Shot MultiBox Detector trained on COCO.

Details

  • Model name: ssd-inception-v2-coco-tf

  • Model source: tensorflow/models

  • Model author: Wei Liu, et al.

  • Model license: Apache 2.0

  • Model size: 97.50 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, ssd, inception

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-inception-v2-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-mobilenet-v1-coco-tf#

Single Shot Detector model from SSD: Single Shot MultiBox Detector with MobileNetV1 backbone trained on COCO.

Details

  • Model name: ssd-mobilenet-v1-coco-tf

  • Model source: tensorflow/models

  • Model author: Wei Liu, et al.

  • Model license: Apache 2.0

  • Model size: 27.83 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, ssd, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-mobilenet-v1-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-mobilenet-v1-fpn-640-coco17#

MobileNetV1 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks resized to 640x640.

Details

  • Model name: ssd-mobilenet-v1-fpn-640-coco17

  • Model source: tensorflow/models

  • Model author: Mark Sandler, et al.

  • Model license: Apache 2.0

  • Model size: 43.91 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, ssd, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-mobilenet-v1-fpn-640-coco17")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-mobilenet-v1-fpn-coco-tf#

FPN Single Shot Detector model from SSD: Single Shot MultiBox Detector with MobileNetV1 backbone trained on COCO.

Details

  • Model name: ssd-mobilenet-v1-fpn-coco-tf

  • Model source: tensorflow/models

  • Model author: Wei Liu, et al.

  • Model license: Apache 2.0

  • Model size: 48.97 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, ssd, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-mobilenet-v1-fpn-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-mobilenet-v2-320-coco17#

MobileNetV2 model from MobileNetV2: Inverted Residuals and Linear Bottlenecks resized to 320x320.

Details

  • Model name: ssd-mobilenet-v2-320-coco17

  • Model source: tensorflow/models

  • Model author: Mark Sandler, et al.

  • Model license: Apache 2.0

  • Model size: 43.91 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf2, ssd, mobilenet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow>=2|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu>=2|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-mobilenet-v2-320-coco17")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

ssd-resnet50-fpn-coco-tf#

FPN Single Shot Detector model from SSD: Single Shot MultiBox Detector with ResNet-50 backbone trained on COCO.

Details

  • Model name: ssd-resnet50-fpn-coco-tf

  • Model source: tensorflow/models

  • Model author: Wei Liu, et al.

  • Model license: Apache 2.0

  • Model size: 128.07 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf, ssd, resnet

Requirements

  • CPU support

    • yes

    • Packages: tensorflow|tensorflow-macos

  • GPU support

    • yes

    • Packages: tensorflow-gpu|tensorflow>=2|tensorflow-macos

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("ssd-resnet50-fpn-coco-tf")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)

vgg16-imagenet-tf1#

VGG-16 model from Very Deep Convolutional Networks for Large-Scale Image Recognition trained on ImageNet.

Details

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "imagenet-sample",
 6    dataset_name=fo.get_default_dataset_name(),
 7    max_samples=50,
 8    shuffle=True,
 9)
10
11model = foz.load_zoo_model("vgg16-imagenet-tf1")
12
13dataset.apply_model(model, label_field="predictions")
14
15session = fo.launch_app(dataset)

yolo-v2-coco-tf1#

YOLOv2 model from YOLO9000: Better, Faster, Stronger trained on COCO.

Details

  • Model name: yolo-v2-coco-tf1

  • Model source: thtrieu/darkflow

  • Model author: Joseph Redmon, et al.

  • Model license: GPL-3.0

  • Model size: 194.49 MB

  • Exposes embeddings? no

  • Tags: detection, coco, tf1, yolo

Requirements

  • CPU support

    • yes

    • Packages: tensorflow<2

  • GPU support

    • yes

    • Packages: tensorflow-gpu<2

Example usage

 1import fiftyone as fo
 2import fiftyone.zoo as foz
 3
 4dataset = foz.load_zoo_dataset(
 5    "coco-2017",
 6    split="validation",
 7    dataset_name=fo.get_default_dataset_name(),
 8    max_samples=50,
 9    shuffle=True,
10)
11
12model = foz.load_zoo_model("yolo-v2-coco-tf1")
13
14dataset.apply_model(model, label_field="predictions")
15
16session = fo.launch_app(dataset)